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The Design of an Adaptive On-Line
Binary Arithmetic-Coding Chip

Shiann-Rong Kuang, Jer-Min Jou, and Yuh-Lin Chen

Abstract—In this paper, we present a very large scale inte- coding makes the code table according to the probabilities
gration (VLSI) design of the adaptive binary arithmetic coding that the symbols will occur. A shorter code is assigned to a
for lossless data compression and decompression. The main mOd'frequent symbol and a longer code for a rare one. Although

ules of it consist of an adaptive probability estimation modeler . .
(APEM), an arithmetic operation unit (AOU), and a normaliza- these two schemes are expert on different sources, it has been

tion unit (NU). A new bit-stuffing technique, which simultane- Shown in [4] that any practical dictionary-coding scheme can
ously solves both the carry-over and source-termination problems be outperformed by a corresponding statistical-coding scheme.
efficiently, is proposed and designed in an NU. The APEM  The process of statistic coding can be split into two stages:
estimates the conditional probabllltle_s of input symbols efficiently modeling which estimates the relative probability for each
using a table lookup approach with 1.28-kbytes memory. A . . . . -

new formula which efficiently reflects the change of symbols' INPut Symbol, ancoding which translates input symbols into
occurring probability is proposed, and a complete binary tree @ coded stream by the estimated probability. There are two
is used to set up the values in the probability table of an APEM. strategies for the modeling: static or adaptive. Static models
In an AOU, a simplified parallel multiplier, which requires  a55yme fixed probabilities for each input symbol throughout

approximately half of the area of a standard parallel multiplier : :
while maintaining a good compression ratio, is proposed. Owing the coding procedure. In contrast, adaptive models represent

to these novel designs, the designed chip can compress any typdhe probabilities so far and change them with ea_C_h new
of data with an efficient compression ratio. An asynchronous Symbol. It has been demonstrated under general conditions that
interface circuit with an 8-b first-in first-out (FIFO) buffer for  adaptive coding outperforms static [5]. Well-known statistical-
input/output (I/0) communication of the chip is also designed. ¢qding techniques include Huffman [19] and arithmetic coding
Thus, both. I/O and compression operations in the chlp can [6], [7]. Huffman requires that each symbol be represented
be done simultaneously. Moreover, the concept of design for =1 : X ; g
testability is used and a scan path is implemented in the chip. Py an integer number of bits. On the other hand, arithmetic

A prototype 0.8-um chip has been designed and fabricated in coding represents the source data as a fraction that assumes a

a reasonable die size. This chip can yield a processing rate ofyalue between zero and one. It can achieve better compression

3 Mb/s with a clock rate of 25 MHz. ratios than Huffman coding as long as the statistics are accurate
Index Terms—Avrithmetic coding, chip design, lossless data [3]. However, arithmetic coding tends to be slow because in
compression. its simplest form it requires at least one multiplication per
input symbol. Moreover, if the adaptive coding scheme is

I. INTRODUCTION applied, an extra division may be needed at every coding cycle.

Therefore, algorithm modification and hardware realization for

L OSSLESS data compression, which can recover Oy metic coding to prompt the compression speed are critical
pressed data without any distortion, is a useful strategy Loal-time applications

in many applications. One strategy is for compressing SOurCe%\/Iany fast adaptive arithmetic-coding algorithms have been
in which no loss of information is allowed, e.g., textuabr

oposed [8]-[10]. However, because the implementation of
files, executable files, and medical images. Another strate p [8-[10] P

is for | . . . hich loss| di %Itialphabetic arithmetic coding is very complicated, few
IS Tor lossy Image compression, In Which 10SSIess co 'Q:qwips have been reported that use multialphabetic arithmetic-
is a part of the whole coding algorithm, e.g., those alg

. . . %'oding algorithm. To make the implementation of arithmetic
rithms specified by JPEG [1] and MPEG [2]. Various IOSSIeSc ding easier and more practicable, the size of the alphabet

c?rg!f;fressut)n htechrzlqget_s h?ﬁ been otleveloped f(:r Sourﬁigds to be reduced to binary so that the coding process can

E)ssllesegerQO(;:'narasccﬁgfnlgs: d'c?‘rc()an:rre avr\]lg zgizt'galgigg'rg correspondingly simplified. A faster and simpler implemen-
o INg SC - dicti y : ISt COAINGion of arithmetic-coding algorithm is using the table lookup

[3]. Dictionary coding achieves compression by identifyin proach [23]. However, its memory size and compression

repeated substrings and assigning a short code for themraﬁo must make a tradeoff; and the memory size may be

references to other copies defined in a dictionary. Stat|st|<§/aery large in order to get a high compression ratio. On the

other hand, th&)-coder, an adaptive binary arithmetic-coding
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scendent of th&)-coder, has been adopted by both JPEG and Il. BINARY ARITHMETIC CODING
JBIG still-image-compression algorithms [21]. Fu and Parhi o _ _ _
[14] proposed an algorithm which uses redundant arithmefle Basic Binary Arithmetic-Coding Scheme

to obtain further speed-up for tigA7-coder. However, all the  Arithmetic coding is a statistical-coding technique that
(-coder-based arithmetic-coding hardwares described abe@iteempts to represent source data with minimal entropy [6],
are designed to compress mainly bilevel image data and nf@y. The encoding process begins with the open interval
be poor for other types of data. It would be nice to hav@, 1) and subdivides it intd: subintervals, wherd; is the
a compression chip universal enough to quickly compresgmber of unique symbols in the source data stream. Each
any type of data that could still achieve a good compressignbinterval represents a unique source symbol, and the size
ratio. of the interval is proportional to that symbol’s probability of

In this paper, we present an adaptive division-fre§ccurrence. For a given source symbol, the encoder locates
arithmetic-coding hardwared algorithm and its VLSI desigthe corresponding subinterval, and then divides this interval
for lossless compression of universal data. The basic binafiyo subintervals whose ratios are the same as the original
arithmetic-coding scheme is first modified to adaptivelyumulative probabilities. The encoder finds the appropriate
estimate the occurring probabilities of input symbols, anglibinterval for each successive symbol. Since this subinterval
then the important implementation problems of fixed-precisias located within the previous interval, it represents not only
registers, source termination, and carry-over are solved, tlie present, but also the past symbols. This process continues
order to make it apposite for hardware implementation. Thecursively until the entire source data stream has been en-
modified hardwared algorithm iteratively codes input data yoded, at which time the encoder transmits the final interval.
the three phases of: 1) probability estimation; 2) arithmetithe decoding process of arithmetic coding recovers the source
operation; and 3) normalization. In the probability-estimatiogymbols from the received interval using a procedure similar
phase, a ten-order context (Markov) modeler is designed ttpthat of the encoding process. Like the encoder, the decoder
gather the conditional probabilities of the input symbolsegins with the open intervdd, 1) subdivided into the same
which are also updated by the modeler with each input bitsubintervals. The decoder locates the subinterval in which
in order to approach their accurate values and obtain a higie received interval resides, yielding the first symbol in the
compression ratio for different types of files. A new formulatream. This subinterval is further divided in the same manner
which efficiently reflects the change of symbols’ occurringy recover subsequent symbols. The procedure terminates
probability is proposed, and a complete binary tree is usedwden the current and received intervals are equivalent.
set up the values in the probability table. In the arithmetic- Binary arithmetic coding deals with only two input symbols:
operation phase, a simplified parallel multiplier, which requireg’ and ‘0." Therefore, the coding process will be simplified
approximately half of the area of a standard parallel multipliegorrespondingly and be easier to implement. Ketand C
is used to perform the multiplication operations of codingepresent the width of a subinterval, and the starting point of
In the normalization phase, a new bit-stuffing techniquée subinterval respectively, and let probabil(‘0’ | X)
is applied to solve both the source-termination and carrglenote the occurring probability of symbol ‘O’ given the
over problems simultaneously and efficiently. The proposegevious input stringX. If symbol ‘O’ is encoded, the new
hardwared algorithm is then implemented into a VLSI chipd becomes equal tod - P(‘0' | X), and theC remains
In it, an asynchronous interface circuit with a 1-byte first-imnchanged. If symbol ‘1’ is encoded, then the newbeing
first-out (FIFO) buffer for input/output (I/O) communicationequal toA - (1 — P(‘0' | X)); the C is addedA - P(‘0’ | X).
is designed. Thus, both I/O and compression operations in thave approximateA - P(‘0’ | X) with a value of AP, the
chip can be performed in parallel. Moreover, the concept atlaptive encoding algorithm may thus be written as
design for testability is used and a full scan is implemented C =0; A =1;

in the chip. It is implemented by using the Q.8 CMOS for (each input symbol)

technology, and it occupies a silicon area of 425 mnf, AP= A-P('0" | X); 1)
yielding a compression rate of 3 Mb/s with a clock rate of if (input symbol==‘0") A= AP; 2
25 MHz. Since the chip can compress any type of data with else{A=A—- AP; C=C+ AP;} 3)

a good average compression ratio, it is suitable for use in }

an environment which has much multimedia (e.g., text data, OutputC as the encoding result.

executing files, and audio and video data) to be stored and-ig. 1 shows the interval subdivision example of binary

losslessly transmitted many times. arithmetic encoding when the following data string is
In Section II, we will introduce the basic adaptive division*0 1 1 ---.” The A; and C; in Fig. 1 denote the width and

free binary arithmetic-coding scheme and the proposed hasthrting point of the subinterval of iteratiofy respectively.

wared algorithm. In Section Ill, we will describe the systerote P(‘1’ | X) =1 — P(‘'0’ | X).

architecture of the chip to realize the proposed algorithm. The binary decoding process follows a similar procedure

The detailed hardware design of the key building modules in reverse. The received is compared at each cycle with

the chip is also addressed in Section Ill. The chip realizatithe AP, and falls in one of the regions corresponding to the

and analysis of the proposed adaptive binary arithmetic-codisgmbol ‘0’ or ‘1’ according to its magnitude. The correspond-

chip are discussed in Section IV. Finally, concluding remarksg symbol is thus decoded! is then adjusted by the same

are made in Section V. method as employed in the encoding process. In the case in
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Fig. 1. Interval subdivision example of the binary arithmetic encoding.
which symbol ‘0’ is decoded remains unchanged. In the C, which solves the fixed-precision registers issue and
case in which symbol ‘1’ is decoded; must be subtracted by is discussed later.
AP. The adaptive decoding algorithm is as follows: 4) Adaptive statistical modelingHow is the probability of
C is the input of encodingA = 1; each symbol estimated, and how is their cumulative
while (the input encoding data does not terminate) probability maintained?
AP =A.-P(0 | X); The approaches to solve the first three issues will be discussed
if (¢ <‘A,f_)){ _ in this subsection, while the design of the adaptive modeler
0'is de?oded, needed to deal with the fourth issue will be explained in the
A= AP, (4) following subsection.
else 1) Fixed-Precision Registerstn the designed chip, two

fixed-size registers, named registérand registelC, are used

to keep track of the subinterval width and the starting point

of the subinterval’, respectively. Since finite-length registers

are used, the multiplication result in (1) has to be maintained
to a fixed number of bits by normalizing registedsand C

[6]. During the encoding process, registéris normalized by

B. Implementation Issues shifting some bits to the left so that its most significant bit

On a conceptual basis, hardware implementation of th¥SB) is one whenever the value dfis less than half of the
above algorithms would seem quite simple. However, sorffttial subinterval width. Registe€’ is also shifted to the left
practical considerations, which complicate the design of thée same number of times, so that bits in €heegister always
desired on-line and adaptive binary arithmetic-coding chipave the same algebraic weight as the aligned bits inAhe
need to be addressed before the practical chip implementatiggister. The bits shifted out from the most significant end of
is carried out. They are outlined as follows. register C' are buffered and transmitted out as the encoded

1) Fixed-precision registersHow can the arbitrarily long OUtPUt. _ _ _
fixed point binary fractionst andC be calculated on a  During the decoding process, registerandC' are required
chip employing fixed length registers? to go through the same normalization process in which the

2) Source terminationBecause we want the coder to Worwumber of bits shifted left out frort and C are discarded;
on-line, it cannot know the length of the encoded dat the same time, the same number of bits from the input
stream in advance. How does it know when to terminat€ncoded string are shifted to the right endcoffor the next

3) Carry-over problem Since the encoder works on-line cycle decoding.
once some symbols are encoded, the encoding of subse2) Source Termination and Carry-Ovefor the source-
quent symbols may alter what has already been outputtegimination problem, Witteret al. [7] use an extra symbol
due to the carry occurring in (3). This condition occurEOF’ to indicate the situation of source termination.
when a carry generated in (3) propagates through &lbwever, the method loses compression ratio and increases
bits of registerC to affect the encoded symbols thathe complexity of the coding process. To solve the carry-
have been shifted out by the normalization operation a@ver problem, a technique callebit stuffing is proposed

‘1" is decoded;
A=A—AP; C=C — AP; (5)
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in [6]. Here, we present a new efficient method to solvmethod in [7] using the special termination symbol ‘EOF’ will
the two issues simultaneously. The proposed method usssease the coding complexity because it needs at least three
a termination mark rather than the termination symbol toput symbols. This makes the probability model work more
indicate source termination, thus avoiding the complexigifficult, and more steps will obviously be needed in the coding
of coding increasing. This is an improved technique of bjirocess. As for the loss of compression ratio, we estimate it
stuffing. In the following, we show how this termination markby the two following methods.

works. When the termination symbol ‘EOF’ is used:

To solve the two issues together, a 16-b shift register calledin the arithmetic-coding process, the subinterval of any
R is used as the output buffer in the encoder. During the symbol must be greater than zero.Afis an 8-b register,
normalization process of encoding, we check the contents ofthe value ofA after normalizing will be
register R. If all its bits are ‘1'’s, we add and shift two
stuffing bits with value ‘0’ into the least significant bit (LSB) Oxff > A > 0x80.

of R to block carry-over propagating. We know the second Moreover, the subinterval of ‘EOF,” which is stored in an

stuffing bit may be changed to ‘1" if a carry is generated g, register, must be larger than or equabi®1. Thus,
in (3) during encoding. Since no carry can propagate to the

same bit twice, the first stuffing bit will always be ‘0’ and A-P('EOF | X) > 0x01.
this feature will be used to indicate the source-termination . ) ) ,
condition. When the process of encoding ends, the encodeﬁy (4) and (5), the probability of ‘EOF,P('EOF" | .X),
sends an additional successive 17 ‘1'’s out as the termination””! be
mark. In the decoding process, the registers used as the A- P(‘EOF' | X) > 0x01
input buffer. If the decoder receives 16 bits all with value ‘1, . ;
i.e., R = Oxfiff, it will check the next two input bits (stuffing = OXE‘;O P ,( EOF"| X) 72 0x01
bits). If these stuffing bits are “1x’%{ do not care), the decoder = P(EOF' | X) > 1/2" = 0.78%.
will end the decoding process. If the stuffing bits are "01,” the tperefore, the interval that we can use for all other symbols
decoder will add 1 to the decoded result to amend It Thf?will reduce 0.78% at least. That is, the overall compression
decoder just ignores the two stuffing bits when they are 00.. ratio will reduce 0.78% at least.

However, sometimes the encoder may output 16 consecu o . .

en our termination mark is used,;

‘1"’s though the contents of output buffg® are never equal ) ] ) )
During the encoding process, two extra stuffing bits are

to Oxffff. This will cause the decoder to work incorrectly. A

The reason why this situation occurs is explained as follows.2dded and outputted whenever 16 consecutive ‘1'’s are

Assume output buffer? to be equal toOxfffe. During the ggnerated. Assuming that the probab|I|Fy of each encoded

normalization, the MSB of? will shift left out and become  Dit "1’ équals 1/2 (based on the assumption that the encoded
result usually has the maximum entropy), we will add two

an encoding output. If the bit shifted frod into R is ‘1, X _ % p '
the contents of? will becomeOx{fd. Then, if the operation ~ Stuffing bits every 2 bits on average. This causes the
compression ratio to be decreased by a figur@ @° =

C+ AP produces a carry when encoding the next symbol, the : /
0.003%. Finally, one extra LPS and 17 consecutive ‘1'’s as

contents of R must add one and becontflfe, which will Hhe , i
the termination mark are added fixedly to end the encoding

form 16 consecutive ‘1'’s with the MSB ‘1’ that has been ) X e
shifted out; however, the contents Afare not equal toxf process, only decreasing the compression ratio slightly.

at that time. An additional up-count count€idnumis used to _ )

overcome the problem. The count8tnumis first set to 0 and C- Design of Adaptive Modeler

then counts the number of consecutive ‘1’’s outputted from the The main challenge in designing the adaptive coding chip

encoder. If the output of the encoder is ‘1,” count€iinum is how to estimate the probability of each input symbol and

accumulates one. Otherwisglnum is reset to zero. When how to maintain their cumulative probabilities. Many adaptive

C1lnum = 16, which denotes consecutive 16 ‘1'’s outputtednodels have been proposed [8]-[10], their main problems

from the encoder, the encoder adds and shifts two stuffing bitsing that they are not accurate enough or are too complex

“00” into R and reset€21num with more computation resources. Here, we design a new
Note that the decoder reads the encoded string and judgeaptive and division-free probability estimation modeler with

whether registeR is equal ta)x{tff only during the normaliza- less memory that still achieves a high compression ratio.

tion phase. In order to ensure that the termination mark works,Our basic idea is to find the probability values with the most

one extra less probability symbol (LPS) must be encodedcurring frequencies for symbol ‘0’ in the sources in advance,

before the encoder sends consecutive 17 ‘1'’'s to terminaiad to save them in a probability table callBdob0, which

the encoding process. As a result, when the decoder decodassed to approximate the conditional probabily 0’ | X).

the extra LPS, the MSB ofi after the arithmetic operation We shall also construct two offset tables call€ and

of (4) or (5) will be zero and, therefore, the operations d&1, which store the distances between the new and original

normalization will be executed so that the termination mankrobabilities in the probability tablérob0 for the current

can be detected to end the decoding process. input ‘0" or ‘1, respectively. These tables will be used to
We now compare our termination mark with the terminatioget the new probability. Am-bit shift register named is

symbol used in [7]. Regarding the complexity of coding, thesed to record the previous input symbols, called conditional
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Address table Ad  Probability table Offset table Offset table 45 - average C-ratio
1024*8 Prob0 GO G1
128*8 128*5 128*5
o 0.00331 27 0 40
- A[5] 0.44531 2 4,3 35
[S F— . 0.45312 1 5
L 0.5 2\ 27
: 0.54688 1) 1 30 1
e 0.55469 5 2
. . . 25
0.99609 0 27
20 order n
H 3 T 1 1 1 1 T T 1
Fig. 2. The relation between tabled, Prob0, GO, andG1. 8 10 5 " 16 18 0 5 "

) ] _ Fig. 3. The curve of average compression ratio versus order
states or contexts; this register helps the modeler to estimate

the conditional probabilityP(‘0" | X S) or simplify
P('0" | S) for the next symbol. Because thebit S shift
register is applied, we say we use an orderentext (Markov)
model. Additionally, an address table, denotedAas with
2" pointers, which point to the entries &rob0 to find the
conditional probabilities for 2 states, is also constructed
Initially, all the entries in theAd table point to the entry in the
Prob0 table with a probability value equal to 0.5. The valu
of the S register is used as an index for tial table. Based
on the above mechanism, the formulas required to gener
condition probability P(‘0’ | S) of input symbol ‘0’ given
the previous input condition recorded ifi, and to update
the corresponding pointer in th&d table for the next cycle
adaptation are as follows:

is how to determine the’s value so that its high compression
efficiency can be obtained without using a large memory.

In fact, the compression efficiency does not necessarily
increase when order increases. We find that the compression
efficiency increases very little or even decreases by increasing
'order n whenr, is large. One of the reasons for this is that
the ordern becomes higher and that the condition states then
fhcrease much more; however, the length of the input data
stream is finite and it may have been coded completely before

& probabilities under the condition states become stable.
Therefore, for short source input, the compression efficiency
decreases earlier. Fig. 3 shows the average compression ratio
of binary arithmetic coding versus the ordemade by us for
26 different types of files (including text, binary, and image

PO | S) files). The compression ratio, denoted®@yratio, is defined as
= Prob0[Ad[95]] ©)  patio — < 1 the compressed datfa sje' 100%. ()
Ad[S] the original data size

The results show that the compression efficiency decreases
when ordern is larger than 18. In our design, orderis

if symbol ‘0’ is coded

_ [ Ad[S]+ GO[Ad[S]],
o if symbol ‘1’ is coded.

Ad[S] - G1[Ad[9]],

(7)

The relation among tablesd, Prob0, GO, andG1, as well
as S, is shown in Fig. 2. How to determine the bit number
of S register and how to find the values filled in tabR®bO,
GO0 and G1 are described in the following paragraphs.

1) Determining the Bit Number of Regist€r In general,

selected as ten to save the required memory so that the
whole circuit can be integrated into one chip and still have
a good compression ratio. On-chip memory limitation can be
overcome by adding external memories for higher order cases
to increase the compression ratio.

2) Building the Probability Tablé’rob0: The probability
tableProb0 contains the first 128 probabilities with the highest

the input data stream is a random process with some statistiseturring frequencies for symbol ‘0.” To find these probability
relation. That is, there is a correlation between a particulaalues, we use a complete binary tree and some counters to
symbol and its neighborhood in the input data stream. Fsimulate the process of calculating conditional probabilities in
example, the individual probability of character ‘appearing coding (see Fig. 4). Every node in the tree represents a state of
in the text data is 2.4%, but the probability of charactdhe probability calculating process and contains two data: one
‘u’ appearing after character*is 99%. Using the Markov is the value of P(‘0’ | S) at the state, the other is its weight.
model in the coding will isolate the probability distributionThe weight of a node shown in parenthesis means the relative
of symbols and decrease the randomness. Therefore, usiogurring frequency of the state compared to all other states.
the high-order Markov model to estimate the probability ofhe left child of a node is the new state when input symbol
symbols occurring will increase the efficiency of arithmeti€l’ is inputted, and the right child is ‘0.” Initially, the value of
coding. However, it is not practical to use the high-ordehe root node is “1/2” and its weight is set as 1000. The value
Markov model in the multialphabetic arithmetic coding due tof the right child of the root is “2/3,” which means that the
memory limits because there exist” conditional states for new P(‘0’ | S) is “2/3” after an input symbol ‘0’ is inputted,

the ordern context model if there are: different symbols in that the weight of the node becomes 500 because its parent
the alphabet. However, for binary arithmetic coding, the higimode’s weight is 1000, and that the probability of getting input
order Markov model is made possible by the fact that ongymbol ‘0’ is assumed to be 1/2. By this process, we build
two different symbols, ‘1’ and ‘0’ are involved. The problema complete binary tree of 255 levels. The partial tree and
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TABLE I
THE CoMPRESSIONRATIO COMPARISON OF THREE STEP VALUES FOR
DIFFERENT TYPES OF FILES USING THE ORDER-16 CONTEXT MODEL

Text Files
file t07 t18 t19 120 21 22
entropy 67.78% 67.61% 71.74% 66.56% 70.49% 68.79%
division 64.05% 63.41% 67.37% 62.49% 67.26% 61.26%
step=16 60.65% 60.37% 62.81% 58.68% 64.81% 53.40%
step=32 62.60% 63.00% 65.31% 60.99% 66.97% 57.69%

Fig. 4. Part of the probability estimation tree. step=64 62.85% 63.86% 66.02% | 61.50% 67.69% 60.16%

Binary Files
TABLE | file t03 t09 t10 t13 t14 23

THE RESULT OF THE PARTIAL TREE OF FIG. 4 entropy 28.94% 42.74% 33.40% 40.45% 30.70% 49.09%

division 21.74% 37.53% 32.47% 38.86% 23.33% 42.72%

P(0'IS) (6:‘1/ /245,3 ?,51//235,5 1(%%5)6 1(7%5)6 1(%; if)G step=16 | 25.82% | 39.41% | 42.99% | 48.68% | 26.68% | 44.21%

step=32 26.83% 40.90% 43.73% 49.87% 27.44% 46.57%

occurring times| 334 500 1332 500 334 Step=64 | 25.67% | 40.51% | 42.58% | 49.20% | 26.04% | 47.31%
percentage 11.1% 16.7% 44.4% 16.7% 11.1% Image Files

file t1s t05 ti2 t24 tl6 t17

entropy 50.40% 27.27% 50.94% 14.65% 28.33% 40.70%
its corresponding results are shown in Fig. 4 and in Table [fivision | 48.13% | 2199% | #980% _ 5.57% 23-37:/" 37.70%
. . . == 4, 0, 0, 0,
respectively. After the complete binary tree of 255 levels s ;2 :zijf’ 1222; 22‘7‘3; 19();12//" iizz f ig;if’
- T . . slep= 37% . (] 7% . ° . () . (]

[I'd
constructed_, the flr_st 128 probability values acc;ordmg to theif omor | @27 | T636% | 4705% | 539% | 2152% | 33.03%

corresponding weights are selected and put into Rheb0

table, as shown in Fig. 2.

~ 3) Building the Offset Table&0 and G1: From observ- \hole input file to calculate the actual occurring probabilities
ing the process of calculating conditional probabilities wity symbols ‘0’ and ‘1’ being used in the following coding
counters, we know there are different variations of thgocess. The compression in the “division” row is achieved

conditional probability for symbol ‘0,’P(*0" | 5), during py ysing two counters and the division operation to directly
the e_ncodlng process. The conditional probab|I|ty_ of symbg lculate P('0’ | S)'s. We find thatstep set to 64 is good
0" will change faster (slower) when few (many) input datgoy text files since the data in the text files usually has more
have been compressed. We use the following new formulﬁ@ure of local correlation, and thattep = 16 is good for

with a parametestepto approximate the complex variationinage files since the data in the image files usually has a

of the conditional probability”(*0" | S): uniform distribution. On average, the compression ratios of
. step= 32 are good for any type of files (see Table II). Because
PCO[S) our coding chip is targeted to general use, such as lossless
0 1 - _ ) . o o a )
c0/step + -100%, if input symbol is ‘0’ multimedia data (_:ommynlcatlon applicatiorstep = 32 is
_ ) T/sep+ 1 ) chosen and practically implemented.
M - 100%, otherwise
T /step+ 1

D. The Proposed Hardwared Algorithm and Comparison

wherec0 is the number of symbol ‘0’ that has been encoded, Based on the above discussion, the pseudo-code description
dI' is the aggregate number of all symbols that have beeh the proposed hardwared algorithm for adaptive binary
encoded, andtepis a tuning parameter used to reflect tharithmetic coding is summarized in Fig. 5. Both the processes
degree of the variation of the probabili#('0’ | S), 1 < of encoding and decoding are classified into three phases:
step< 256. The larger the value ddtepis, the more quickly probability estimation, arithmetic operation, and normaliza-
the variation of P(‘0’ | S) changes. tion. In the probability-estimation phase, the adaptive modeler
Using the simulation result of (9), we calculate the distan@generates probability?’(‘0" | S) by using (6). In the arithmetic
(offset) value in tableProb0 between the currenP(‘*0’ | S) operation phase, the new valuesAfandC are calculated by
and the nextP(‘0’ | S) for each state5, and store all offsets using (2) and (3) for encoding, or (4) and (5) for decoding.
into tablesG0 and G1. However, how to choose thgtep Moreover, the adaptive modeler is also updated by using (7) in
value to tuneP(‘0’ | S) to approach the variation is still athe arithmetic operation phase. The normalization phase of en-
difficult problem. We have chosen thretepvalues: 16, 32, coding (decoding) normalizes registéandC, outputs (reads)
and 64, and use (9) and the proposed approach to simuldie encoded string, and deals with the source-termination and
the variation of P(*0’ | S)'s and to do compression. Thecarry-over problems by the approach described in Section II-
corresponding compression results for different types of fil&?2.
are given in Table Il. In this table, all compression results For comparison purpose, we considered some different
are obtained by adopting the order-16 context model. Eacbding methods for coding different types of data. Table I
result in the “entropy” row is obtained by prescanning thghows the comparison results of compression ratio for different
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Encoding()

C=0x00; A4=0xff, R=0x0000; S=0000000000;
for (each input binary symbol) {
phasel: Generate P('0'|S) by Eq.(5);
phase2: AP=A* P('0'|S);
if (input symbol=="0") A=AP;
else {
A=A-AP; C=C+AP,
if (carry occurs) Rt+;

Update the adaptive modeler by Eq.(6);
Shift the input symbol into S;

phase3: while (MSB of A==0) normalization_of encoding();

Encode LPS and then output 17 consecutive '1"’s;

}

normalization_of encoding()

Shift MSB of R as output, shift MSB of C into R, and shift left 4 and C one bit;
if (Output=="1") {
if (Clnum==15) { Output two consecutive '0"”s;  Clnum++; }

else Clnum=0;
if (R==0xffff) { Output two consecutive '1"”s; R=0xfffc; }

(@)
Decoding()
{

C and R is the encoded input;  A=0xff;  S=0000000000;
while (true) {
phasel: Generate P('0'|S) by Eq.(5);
phase2: AP=A* P('0'|S);
if (C<AP) { A=AP; '0'is decoded; }
else { A=A-AP; C=C-AP; 'l" is decoded,; }
Update the adaptive modeler by Eq.(6);
Shift the output symbol into S;

phase3: while (MSB of 4==0) normalization of decoding();
}

normalization of decoding()

{
Read input symbol;
Shift left 4 and C one bit, shift MSB of R into C, and shift the input symbol into R;
if (Intput=="1") {
if (CInum==15)

Read two stuffing bits “b,b,”;

if (“b,b,"=="01") { R=0; C++ };

if (“b;b,"=="1x") End decoding;

Clnum++;

else Cl/num=0;

(b)

Fig. 5. (a) The pseudo-code of the proposed adaptive binary arithmetic-encoding algorithm. (b) The pseudo-code of the proposed adaptive binary
arithmetic-decoding algorithm.

coding methods by adopting the order-16 context moddheir original algorithms, except that an order-16 context
In the table, ST32 is the proposed hardwared algorithnmodel is added for comparison. In addition, Huffman is the
with fixed tuning step 32. MF1 and MF2 are the binaradaptive Huffman method [19]. LZW is the compress utility

arithmetic multiplication-free coding based on the algorithmsn UNIX [25]. Comparison results show that the proposed
proposed in [8] and [9], respectively. MDF is the binanhardwared algorithm can compress any type of data with a
arithmetic multiplication-free and division-free coding basedgood compression ratio. The next problem is how to design
on the algorithm proposed in [10]. The three software prand implement the hardwared algorithm with less hardware
grams, MF1, MF2, and MDF are implemented by us usingnd a sufficient speed for real-time applications.
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En/De Adaptive Coder
En_Input En_Input In_Data
Shift_[n fole—r o = = slynxgggl
tput ————
y— Py h Out_Data
e_Outpu En_Output i
) ! 0] Output
| h—l c [ % Asynchronous symbol
= Input/Output >
Adaptive[ PCUI)]  Arithmetic Normalization| En/De Path
Modeler Operation Unit ¢ Unit < ¢=>
A — De_Input handshaking
t I signals
4N
Control Path
En CL A
—>] =
—| DecCL £)
—>
Init State registers
En/De

Fig. 6. The functional block diagram of the adaptive binary arithmetic-coding chip.

TABLE Il
THE CoMPARISON ReEsuLTs oF COMPRESSION
RATIO FOR DIFFERENT CODING METHODS

file compression ratio of different coding methods

type name ST 32 MF1 MF2 MDF | Huffman | LZW
107 62.60% | 58.02% | 61.27% | 64.55% | 47.13% | 63.32%
t18 63.00% | 58.05% | 60.57% | 63.83% | 44.70% | 63.59%
Text t19 6531% | 60.89% | 63.86% | 67.65% | 48.39% | 65.78%
120 60.99% | 57.32% | 59.37% | 62.70% | 43.52% | 61.04%
121 66.97% | 61.61% | 63.46% | 67.35% | 46.57% | 67.11%
122 57.69% | 55.21% | 58.15% | 61.67% | 45.25% | 59.13%
average 63.57% | 59.03% | 61.51% | 65.03% | 45.91% | 64.00%
t03 26.83% | 18.59% | 20.87% | 21.42% | 14.74% | 14.41%
t09 40.90% | 32.74% | 35.50% | 37.72% | 27.43% | 38.55%
Binary t10 43.73% | 29.68% | 31.49% | 32.38% | 20.21% | 42.06%
t13 49.87% | 35.16% | 37.34% | 38.87% | 22.82% | 47.99%
t14 27.44% | 20.89% | 22.65% | 23.06% | 16.44% | 18.62%
23 46.57% | 36.82% | 40.03% | 43.39% | 29.61% | 44.71%
average 44.04% | 30.65% | 32.65% | 33.79% | 21.04% | 41.58%
t15 49.37% | 45.01% | 46.55% | 48.12% | 1031% | 38.82%

t05 19.69% | 20.15% | 21.26% | 21.46% | 4.22% 6.40%
Image t12 49.77% | 47.14% | 48.62% | 49.82% | 12.43% | 39.84%
24 9.41% 8.44% 9.15% 8.69% | 10.56% | 0.00%
tl6 24.86% | 22.66% | 23.55% | 23.46% | 3.09% | 10.23%
t17 36.64% | 35.58% | 36.79% | 37.48% | 12.20% | 26.18%
average 36.19% | 34.12% | 35.35% | 36.04% | 9.80% | 25.22%
total average 42.32% | 33.61% | 35.36% | 36.47% | 18.39% | 36.91%

SYSTEM ARCHITECTURE AND MODULE DESIGN

functions. One external signal En/De is used to select the
desired chip function (encoding or decoding). The functional
description of each module is addressed as follows.

The adaptive coder, which contains an adaptive proba-
bility estimation modeler (APEM), an arithmetic operation
unit (AOU), and a normalization unit (NU), performs the
operations of encoding and decoding. The 10-b shift register
records the ten previous input symbols. The APEM generates
condition probability P(‘0' | S) of symbol ‘0’ given the
previous input condition recorded in regist8t Once the
probability P(‘0’ | S) is obtained from the adaptive modeler,
the AOU uses it to calculatd P as well as the new values df
andC, which are successively sent to the NU to be normalized
if necessary. Moreover, the NU will send the encoding result
to the 1/0 path or receive the input symbols to be decoded
from the 1/O path.

All the above operations are governed by the control path.
The control path receives the control statuses from the adaptive
coder and the I/O path and generates the control signals
for them. Since the adaptive coder can execute encoding
or decoding operations, the control path consists of two
distinct combinational logic circuits, as shown in Fig. 6. The
combinational logic circuit EXCL and DeCL generate the
control and next-state signals for encoding and decoding
operations, respectively. Another external signilinitializes
all data and state registers in the chip.

In this section, the system architecture of the proposedtpe asynchronous /0 path has one 8-b input FIFO buffer
hardwared algorithm is first described and then the detailgdy one 8-b FIFO output buffer, and generates appropriate
hardware designs of its main building modules are intrOd“CE}fr’andshaking signals for asynchronous 1/O. The signals

A. System Architecture

Fig. 6 shows the functional block diagram of the adaptivedaptive coder. The I/O path can independently work to the
binary arithmetic-coding chip. The chip consists of three mawther part of the chip, i.e., asynchronously. The adaptive coder
modules: adaptive coder, asynchronous I/O path, and contmidy not be idle when data input or output is occurring in the
path. The chip can perform both encoding and decodim path. The I/O path will suspend the coder when it wants

generated are used to control the data transfer between the
I/0 path and the external environment (device) or the internal
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In_Data <
I— Dout . Din j€——————— Input symbol
Read ——»in  Tran oOu »pa  8-bit FIFO IV [€——————— connect to the
— 0V Emlmy RD j——————> extemnal input device
End Encoding < |; End Input
wto Control Path

@)

Out_Data
Din Dout e3> Output symbol
Write slm  Tran ou v  8-bit FIFO pajle———— connectto the
RD Empty OV ——————>» extemal output device

» End Decoding

End output
¢ to Control Path

(b)
Fig. 7. The architecture of the asynchronous 1/O path. (a) The architecture of the input path. (b) The architecture of the output path.

Din / X \ Clock | l | I I

v / \
/ \ In l
RD .____/ 1\ ' Read (Write) in the cyL]es Read (Wrte) in the cycle
5 ; 2 ';fFIFO’ full
1158 ns I 1s not
Out I
@ 11 t
Fetch Data from FIFO (Read)
Dout X or lnsert Data to FIFO (Write)
Fig. 9. The timing diagram of the Tran circuit.
DA L /7 \
ov \‘/ \1 disables the DA signal. The Qutput path does npt initiate the
> > next output data transfer until the external device shows its
2ns 3ns if FIFO is not empty . . . .
readiness for new data by deactivating the DA signal.
(b) The Tran circuit in the I/O path converts the “Read” or
Fig. 8. The handshaking timing of the 1/O path. (a) Input path timing. (bjVVrite” control signal, denoted as In, from the control path into
Output path timing. the internal handshaking signal, Out. Then signal Out activates

the DA signal of the FIFO buffer. The Read (Write) control

to read data from the empty input buffer or to write data otgnal In will be set to one during the reading or writing cycles.

into the jammed output buffer. The architecture of the inpdi® timing diagram of the Tran circuit is shown in Fig. 9.
and output paths, which consist of an 8-b FIFO and a transfer i
circuit (Tran), is shown in Fig. 7(a) and (b), respectively. ThE: Module Design

input and output signals of the 8-b FIFO include empty (buffer After designing the system architecture of the chip, the next
empty), din (data input), dout (data output), request for dapaoblem is how to implement it with smaller hardware area
(RD), input data valid (1V), output data valid (OV), and datand higher speed for real applications. The realization of the
accepted (DA). Fig. 8(a) shows the timing diagram of inputircuit employs the high-level synthesis concept [15] and the
path’s data transfer. The input path initiates the transfer bpttom-up approach. The detailed design of the key building
enabling the RD signal when the buffer is not full. The externahodules in this chip, including the APEM, the AOU, and the
input device places data on the din line after it receives tiNJ is introduced as follows.

RD signal from the input path and enables the IV signal; the 1) APEM: Fig. 10 shows two architectures of the proposed
input path then disables the RD signal, which invalidates tWPEM. In them, the 1024 8 b SRAM forms theAd table,

data on the din line; the external device then disables the &id the 128- 18 b ROM constitutes th&rob0, GO, and
signal and the Input path can then initiate another input dafal tables. The contents of the 10-b shift registeare the
transfer. Fig. 8(b) shows the timing diagram of the outpuhemory address of the static random-access memory (SRAM).
path’s data transfer. The output path initiates the transfer Bhe contents of SRAM are used as the address of ROM. The
placing the data on the dout line and enabling the OV signadput coding bit, represented by Shift in Fig. 10, is used
The DA signal is activated by the external output device aftes update the data stored in tl¥ed table. In architecture 1

it accepts the output data from the dout line; the output patt Fig. 10(a), the addition and subtraction operations in (7)
then disables the OV signal, and the external device thare concurrently executed by one adder and one subtractor,



702 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

probability P(‘0’ | S) is obtained from the adaptive modeler,
(Prob0 table)| s P(0:S) the multiplier calculatesd - P(‘0’ | S). Subsequently, the
subtractor executes the operationf AP in (3) or (5). The
ALU with only addition and subtraction functions executes the
operation ofC + AP in (3) or C — AP in (5). As mentioned
before, the ALU and subtractor can also be shared to execute

s SRAM AdESJ

_"_’1 ) (Ad table) ”

ROM
(G1 table)

ROM
(GO0 table

1024*8

Shift_In

1 . the addition and subtraction operations in (7) since their active
= 8 times are without conflict. This sharing saves the area of
(@ one adder and one subtractor, as well as the expense of the
additional multiplexer space.
. SRAM Ad[S]‘ TEE) _The multiplier is a key compor]ent in the adaptive coder
x (Ad able) [~ m znfr:ae |tb|is Iocatgd on the. system’s critical path and its area
1024%8 — ggest in the unit. To ggt the faster performance,
I ;Gﬂtable; |"‘5 the parallel multiplier [16], [17] is always adopted at the
Shift_jn s expense of high area complexity. However, we find that the
! s multiplication in (1) has a special feature in which the input
ALU operandsA and P(‘0’ | S) and the productAP are 8 bits.
. Moreover, the eight LSB’s of the product are not used. As a
(b) result, a simplified parallel multiplier can be designed to reduce

ttépe area complexity without sacrificing any performance or
ompression efficiency.

Before discussing how to design the simplified multiplier,
we first examine the operation of a standard multiplier. Assume

Fig. 10. The architecture of the proposed APEM. (a) Architecture 1. (
Architecture 2.

S 2 e that two 8-b numbersY and Y are to be multiplied, the
PEOS) _r:]cO...pa.aw.} #—Deowpu  standard multiplier performs the following operation to obtain
| simplified A C the productP:
Parallel |4r, ALU [ ’ c . . 15
Multiplier % N 8 P=XY Z X 2i Z Y2i zo: P 2i (10)
r Subtractor J 8 8 N N i—0 ! i=0 ! N i=0 !
H— A .
8 where X;, Y;, and FP; denote theith bit of X, Y, and P,
Fig. 11. The architecture of the AOU. respectively. For the standard 88 parallel multiplier in

Fig. 12, the partial sums propagate diagonally in the southeast

respectively. The produced results are selected by one tvgg_egtion along lines of equal binary w_eight di_rectio_ns, and t_he
input 8-b multiplexer to obtain the newd[S]. However, the carries propagate downwards along increasing binary weight

two operations in (7) are mutually exclusive. In other Wordglrectmns. The delay in this operation is due to the carry

they will never be simultaneously executed. Therefore, th@éopagation through the adder array and the carry—fipple adder,

can share one ALU with addition and subtraction functions, 3 ovv”n at tlhe t()jotl;om of Fig.l 12k Tr:]e gar%—ripple ac;jder irS]
shown in architecture 2 of Fig. 10(b). The execution functio sually replaced by a carry look-ahead adder to reduce the

of the ALU in architecture 2 is determined by the Shiit elay.

signal, which is also used to select the correct offset valu sThe product can be represented by the sum of two segments:

inputted to ALU from tableGO or G1 through a two-input the most and least significant segment® and’P, i.e.,

5-b multiplexer. P=mP+I1P
The advantages of architecture 2 are higher hardware uti- 15 7
lization, simpler interconnection, and less hardware area. Ilts= Zpizi +2P12i
drawback is that the ALU must execute its operation after =g i=0
Shift_In is known so that more clock cycles are required for 77 7 7
decoding. This drawback is avoided by architecture 1, in which — Z Z (X:2)(Y;2°) | + Z Z(XiQi)(Yﬂj)
the adder and subtractor can execute their operations before \ ;=1 ;=7 i=0 j=0
Shift.In is obtained. Moreover, the adder and subtractor in (11)

architecture 1 can be shared with the operations of (3) or (5)
in the AOU (see Fig. 11) to further enhance the hardwaFgg. 12 also shows the various sections of the standard mul-
utilization and save the hardware area since their active tintgdier generatingmP and [P. The shaded region contains
are without conflict. Therefore, architecture 1 is better thasells that producéP. If the eight LSB’s of the product are
architecture 2 in global view. As a result, architecture 1 isuncated, segmenf is discarded, and approximately half of
applied and implemented in our chip. the adder cells in Fig. 12(a) are not used, but an error in the
2) AOU: The AOU includes a multiplier, an ALU, a sub-required product would be introduced. We find that the error
tractor, and a comparator, as shown in Fig. 11. Once thwolved is tolerable and does not degrade the compression



KUANG et al. DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 703

Y(‘)'"" t
\ > NG N

Yi K al a a a
. N \ P

Y: sl-[2] (2] (2] (2] ls] [k
Ys sl [e]~Is] &) L&) 18] |8 P
Yy ) 8] [s]=[s) [s] [8) [} P
. \ P4

Ys sl L] (2] (el-{z] sl Lol
2 s ] ] G Cel-Jz] e ™
Y7 sl 18] ] s8] ls] lef-lsf
FAale—F Fale]raleraledraleFak 0P7

Fig. 13. The simplified 8 8 parallel multiplier.
Pis Py Pis3 P2 Pu Pro Py Ps

@ product at columri and row; is one is equal t@?. Let s(4, 5)
Xi Y denote the probability that the sum bit of the adder atithe
column andjth row is one and let(¢, j) denote the probability
that the carry bit is one. Moreover, leti,j) = 1 — p(i,j),
d(i,7) =1—¢(i, §), andi(i, j) = 1 — s(¢, 7). For a standard
parallel multiplier we have the following.

Case l:When0 < i< 6andj =1

Fig. 12. (a) The block diagram of an-8 parallel multiplier where HA and
FA are the half-adder and full-adder cells, respectively. (b) Details ofocell
(c) Details of cell 3.

v v s(d,5) = p(i,)gi + 1,5 = 1) +p(i + 1,5 — 1)g(é,5) (12)
(b) (i, j) = p(i, j)p(i + 1,5 — 1). (13)
Xi Yj Case2:When0<:<6and2<:<7
AN s(i,5) =p(i,5)s(i+ 1,5 — D)e(d, 5 — 1)
kl) +p(i, G +1,5 — (i, 5 — 1)
rYv gl )G+ 1,5 — De(iyj — 1)
FA ] +q(i J)s(i+ 1,4 — d(i,j — 1) (14)
i, j) = p(i,5)s(i+ 1,5 — 1)e(i, j — 1)
vy +p(i, )8+ 1,5 — 1)d(i,j — 1)
© 4 p(i, DG +1,5 — 1)eli, j — 1)
+ q(4,7) '

i,7)s(i+ 1,5 — L)e(d, j — 1) (15)

It can be seen from Fig. 13 that the expected error in the
efficiency. The error and compression efficiency analysis w Iroduct of the S'm.p“f'ed multiplier is equal_ _to‘the value of

. ) e output carry bits from the cells at positids j) where
be discussed below. Therefore, we now design a 5|mpI|f|e0|e ) 4 . .

- : t+7=7,0<i<6,andl < 57 < 7. The weight of these
parallel multiplier which generates a product whose value t')sts is equal 10 2°. We call the cells of Fig. 13 at position
approximately equal te» P by modifying the left—bottom part ' P Is g# thati L 7 the diagonal cellstg.The ropbatl)'ll't
of Fig. 12(a) and without using the cells in the shaded pa&i’é]t)anu out utL ;rair _bit at th(IE gia onal is.one ispe ualltloyits
Fig. 13 shows the details of the simplified multiplier. X ectgd vaFI)ue Thgrefore the exge ted value of tﬂe error in

A comparison of Figs. 12(a) and 13 reveals that the simp -; roduct of t.he sim Iifiéd mult Iiepr i< aiven b
fied multiplier yields a product which is not exactly equal to P P P 9 y
mP. From Fig. 12, it can be seen thaF all the bit p_roducts are e =984 ZC('L}J') (16)
generated by performing axnD operation on the bits of the i
two operands. Lef be the probability that any multiplicand ’
or multiplier bit is one. The probability(é, j) that the bit for (¢, j) belonging to the diagonal cells.
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TABLE IV
THE COMPRESSIONRATIOS OF THE CHIP USING
THE STANDARD AND SIMPLIFIED MULTIPLIERS

file size standard multiplier | simplified multiplier
files
(bytes) C-ratio C-ratio
Textl 73622 49.3% 49.1%
Text2 51740 53.2% 52.8%
Text3 108501 51.7% 51.5%
Text4 23680 49.9% 49.6%
Binaryl 163840 22.9% 23.2%
Binary2 147456 34.3% 34.8%
Binary3 1064960 35.8% 36.3%
Binary4 98304 40.7% 40.9%
Imagel 345600 41.3% 42.0%
Image2 245760 13.7% 13.9% |
Image3 921856 41.3% 41.8% iy :
Image4 345600 27.7% 28.1% o e g i s
average 299243 36.0% 36.5% . L i g i e
& o & i f § L] i §
¢ ACAl Fig. 15. The microphotograph of our binary arithmetic-coding chip.

4 /1

0 En_Qutput
! f extra simple circuit, which consists afD gates, is integrated

into the registet? to examine whether all bits of regist&rare
‘1’’s and to generate the status sigHad1. Moreover, in the
arithmetic operation phase of encoding, regigtas increased
De_Input  one when the operatio@ + AP produces a carry. Although
! the operation can be executed in one 16-b adder, the hardware
area overhead is significant. It is cheaper to use one up-count
counter to execute the operation. Consequently, regigter
_ _ must be designed with the ability to perform up-count. On the
Fig. 14. The architecture of the NU. other hand, registef may add one during the normalization
phase of decoding. Similar to regist®r shift registerC must
Since0 < c(i,5) < 1, it is thus evident that the expectedalso be designed with the ability to perform up-count.
error e lies in the rangd < e < 0.027. The excepted error is
tolerable in the coding process since one ope&(@’ | S) of IV. CHIP REALIZATION AND ANALYSIS
itis also an estimated value and the error will not significantly A prototype of the chip has been implemented and fabri-
affect the ComprESSion efﬁCiency of the Chlp The CompreSSi@ﬂted by using the standard cells of Qbmsing|e-po|y double-
ratios for the chip using the standard parallel multiplier and thfietal (SPDM) technology [18]. The function of the proposed
simplified parallel multiplier obtained from the experimentadaptive arithmetic-coding architecture was first verified by
are summarized in Table IV. From Table 1V, it can be seen thaéing the Verliog hardware-description language (HDL). We
a slight difference is incurred. On average, the compressigien employed the computer-aided design (CAD) tools OPUS
ratios are about the same. [22] for the creation and verification of our chip layout. The
3) NU: Inthe NU, two 8-b shift registerd andC' are used brief design flow is: first, use the preview tool in OPUS
to keep track of the width of the subinterval and the starting floor-plan blocks in the design; then, preview’s block
point of the subinterval, and one up-count count&tnum ensemble and cell ensemble are used to perform placement
is used to count the number of consecutive ‘1'’s coded. bind routing; finally, use Dracula [22] to verify the layout.
addition, a 16-b shift registeR is required to solve the source-The microphotograph of the chip layout is shown in Fig. 15,
termination and carry-over problems. The architecture of théhich contains two parts: the layout of standard cells and
NU is shown in Fig. 14. The dashed lines with arrows in fiour 0.25-kbyte SRAM’s. Table V shows the characteristics
are the control statuses which will be sent to control path. of the adaptive binary arithmetic coding chip. The chip with
Observing the algorithms of Fig. 5, the bound of the cort0 I/O pins occupies a silicon area of 4.24.5 mn?. The
tents of Clnumis 15 and, thus, a 4-b up-count counter iglie is mounted in a 40 LD S/B package. The I/O pins can be
sufficient to implement the operation @flnum An extra separated into five parts:
four-input AND gate is integrated into it to examine whether 1) power supply pins;
it is equal to 15 and to generate the status sigddll. In 2) chip control pins;
addition, the contents d& must also be examined to determine 3) pins for data input;
whether they are equal @xffff when A and C shift one bit 4) pins for data output;
left during the normalization phase of encoding. Therefore, an5) pins for testing.

R[I5]¥ 0 Oxfifc ¥RAI v
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TABLE V TABLE VI
THE CHARACTERISTICS OF THEADAPTIVE BINARY ARITHMETIC-CODING CHIP THE CoMPRESSIONRATIO AND COMPRESSION SPEED
OF OUR CHIP FOR DIFFERENT TYPES OF FILES
characteristic proposed chip
technology TSMC 0.8 2 m SPDM s | flesize | Fufmen | MAAC The chip
bytes , . . C-ti C-speed
supply voltage 5V (bytes) C-ratio C-ratio Coratio (sélcT)le (Mb?{);:ec)
package 40LD S/B Textl 73622 44.7% 45.6% 49.1% 0.197 2.99
operation frequency 25 MHz Text2 51740 48.4% 49.4% 52.8% 0.138 3.00
chip area 4.0%4.5 2 Text3 108501 46.6% 47.4% 51.5% 0.289 3.00
o o 2k ot Text4 23680 45.2% 46.6% 49.6% 0.064 2.97
chip complexity gates Binaryl | 163840 | 14.7% 208% | 232% 0.458 2.86
scan-mode yes Binary2 | 147456 27.4% 32.6% 34.8% 0.405 2.91
Binary3 | 1064960 | 22.8% 31.5% 36.3% 2.898 2.94
Binary4 | 98304 29.6% 36.1% 40.9% 0.268 2.93
. . . , Imggel 345600 10.3% 22.2% 42.0% 0.925 2.99
Smcg the codlng nqture and strategy, and even .the integrated o T ase0 | 40w 7 4% 13.9% 0.690 285
circuit (IC) fabrication technology are quite different for images | 921856 | 124% 17.7% | 418% 2,508 2.94
the respective chips, it is difficult to directly compare anlmage4 | 345600 | 121% | 167% | 281% 0.934 2.96
arithmetic-coding chip with a Huffman one. Compared withaverage | 299243 | 183 | 248% | 363% | 0814 225

the Huffman coding chip of [24], the proposed chip uses about

three times the gate count and is seven times slower; Notge centage
that [24] is bit-parallel and contains only the encoder, butso
the proposed chip is bit-serial and contains the encoder and
decoder. However, the proposed chip achieves two times the
compression ratio of [24] (see Tables Il and VI). The benefit
of a higher compression ratio may be dominated if there are
larger quantity of data to be transmitted or stored many timestp
which is the common situation for today’s multimedia Internet
environment. The details of scan path and compression speed
analysis of the proposed chip will be explained below.

In order to increase the testability of the chip, all registers
in the adaptive coder are connected in serial to form a scaf
path. Moreover, besides the encoding and decoding modes,
the test mode is build into the chip by increasing two extrfég. 16. The percentage distributionmaimbduring the normalization phase.
external signals (pinsJ[1 : 0] and a testing control block is
constructed. IfI'[1 : 0] = “00,” the chip works normally and
pin En/De is used to determine whether the chip is operati
in the encoding or decoding mode. Otherwise, the chip wor
in the test mode. Whefi[1 : 0] = “01,” the test data is shifted
into the registers on the scan path and the original content
the registers are shifted out in serial. WHEfL : 0] = “10,”
the test data is sent to the functional units of the adapti
coder to calculate the results. Wheifil : 0] = “11,” load the

1.94%  074%  028% 0.08% 045%
T T T T - numb

0 1 2 3 4 5 6 7

to Oxffff is very small. In each coding cycle, the iteration
fhe of the normalization loop, denoted msmh is equal to

e number of left shifts occurring in registar such that its
M?B is one. Although we have known thatimbis bound
S‘b())/ seven, it is difficult to predict the average iteration time of
the normalization loop. To solve the problem, some sample
Yi?es are provided for software simulation of the proposed

calculated results of functional units into the registers on t orithm to count thewumbin the normalization phase. The

scan path in parallel. To do pseudoexhaustive testiHytest percentage distribution of theumbi_s Ii;ted in Fig. 16. .The
patterns are used and these test patterns take 0.22 s to finisﬁqﬁﬂlts’ show that the most porrriallzatlon loop executions are
testing under a clock rate of 25 MHz. We also can use the saffigcuted zero or one iteration time and that about 0.5 clock
scan path to test the read-only memory (ROM) and SRAM'’s gycle is, therefore, needed to compllete the n_ormallza'uon phase
the adaptive coder. The scan path in the chip provides 1069 average. As a result, the analysis speed is abigit5 = 3
fault coverage for the adaptive coder which occupies abd¥p/s to which the chip speed conforms.
90% of the total device count in the chip. Since the control Besides the compression speed, the compression ratio is
and asynchronous I/O paths in the chip are not connected@§0 an important evaluation item. Some different types of
the scan path, its fault coverage approximates to 90%. files were used to test the compression ratio. The results
The compression speed of the chip under 25 MHz clo@empared with two different schemes, including Huffman and
rate is approximately 3 Mb/s (see Table V1) and is discusséte multialphabetic arithmetic-coding (MAAC) algorithm, are
as follows. During each iteration of the coding process, it také§own in Table VI. Huffman is the adaptive Huffman coding
eight clock cycles to complete the operation of the probabiligcheme [19]. MAAC was proposed by Jiang in [20]. Twelve
estimation and arithmetic operation phases. The normalizatigmple files are provided for the experiments; their sizes are
phase is a loop with variable iteration times. The executi@iso listed in the second column under “file size.” Compared
delay of each iteration in it is very close to one clock cyclwith other schemes, the compression ratios of this chip are
on average since the probability of registBrbeing equal also good. Moreover, the actual compression tirGeti(ne)
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and the compression spee@'-épeed) of our chip for these
files also are shown in Table VI. The averagespeed of our

arithmetic coder,”IBM J. Res. Developvol. 32, no. 6, pp. 717-725,
Nov. 1988.

hio i | to 3 Mb/ [13] G. Feygin, P. G. Gulak, and P. Chow, “Architectural advances in the
Chip Is very close to S. VLSI implementation of arithmetic coding for binary image compres-
sion,” in Proc. IEEE Data Compression ConfSnowbird, UT, Mar.
1994, pp. 254-263.
V. CONCLUSION [14] B. Fu and K. K. Parhi, “Two VLSI design advances in arithmetic

coding,” in Proc. ISCAS Seattle, WA, Apr. 1995, pp. 1440-1443.
] J. M. Jou and S. R. Kuang, “Library-adaptively integrated high level
synthesis systems,” iRroc. NSC—Part A: Phys. Sci. Engol. 19, no.
3, R.O.C., May 1995, pp. 220-234.
M. Hatamian and G. L. Cash, “A 70-MHz & 8-bit parallel pipelined
multiplier in 2.5um CMOS,” IEEE J. Solid-State Circuitssol. SC-21,
pp. 505-513, Aug. 1986.
S. Nakamura and K. Y. Chu, “A single chip parallel multiplier by MOS
technology,”|IEEE Trans. Computvol. 37, pp. 274-282, Mar. 1988.

In this paper, we have presented a VLSI design of the
adaptive binary arithmetic coding for lossless data c:ompre[%i—5
sion and decompression. The important implementation issues,
including fixed-precision registers, source-termination, and th!
carry-over problem were all efficiently solved in the design.
The key modules of this design include an APEM, an AOU;7)
and a NU. A table lookup approach with 1-kbyte SRAM
and 0.28-kbyte ROM were used in the APEM to achieve (28] %iﬁ;';llsggg ;i‘if”%?ﬁgnv;r_‘g‘f‘gﬂggg.Comm“”' Lab., Industry
good compression ratio. A simplified parallel multiplier, which19] b. E. Knuth, “Dynamic Huffman coding,. Algorithms vol. 6, pp.
requires approximately half of the area of a standard parallel 163-180, 1985.

A : : ] J. Jiang, “Novel design of arithmetic coding for data compressiergt.
multiplier, has been designed in the AOU to decrease the Inst. Elect. Eng.vol. 142, no. 6, pp. 419-424, Nov. 1995.

hardware area. We also designed an asynchronous 1/O patipin w. Pennebaker and J. MitcheDPEG Still Image Data Compression
the chip, which enables the chip to release wait states when it] gtar]darg New Yirlrl:L\J/an h(l;osé?:ndd Reinhgld,_19983. 1992

. e H . esign Framewor ser Gul adence Design Syst., .

IS transmlttlng data. A prototype of the Ch'P has been design ] P.G. Howard and J. S. Vitter, “Arithmetic coding for data compression,”
and fabricated. The performance of the chip is 3 Mb/s on aver-  proc. IEEE vol. 82, pp. 857-865, June 1994. _

age at 25 MHz. The performance seems to be improved by f{Aé&l L. Y. Liu, J. F. Wang, and J. Y. Lee, “CAM-based VLSI architectures

PERTY . for dynamic Huffman coding,"EEE Trans. Consumer Electrgrvol.
pipelining technique, although there are some hard problems 40, pp. 282-289, Aug. 1994,

(e.g., the variable execution cycle numbers needed in egeh J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,/EEE Trans. Inform. Theoryol. 24, pp. 530-536,
Sept. 1978.

coding iteration) that need to be solved. That is our next goal.
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