
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998 693

The Design of an Adaptive On-Line
Binary Arithmetic-Coding Chip

Shiann-Rong Kuang, Jer-Min Jou, and Yuh-Lin Chen

Abstract—In this paper, we present a very large scale inte-
gration (VLSI) design of the adaptive binary arithmetic coding
for lossless data compression and decompression. The main mod-
ules of it consist of an adaptive probability estimation modeler
(APEM), an arithmetic operation unit (AOU), and a normaliza-
tion unit (NU). A new bit-stuffing technique, which simultane-
ously solves both the carry-over and source-termination problems
efficiently, is proposed and designed in an NU. The APEM
estimates the conditional probabilities of input symbols efficiently
using a table lookup approach with 1.28-kbytes memory. A
new formula which efficiently reflects the change of symbols’
occurring probability is proposed, and a complete binary tree
is used to set up the values in the probability table of an APEM.
In an AOU, a simplified parallel multiplier, which requires
approximately half of the area of a standard parallel multiplier
while maintaining a good compression ratio, is proposed. Owing
to these novel designs, the designed chip can compress any type
of data with an efficient compression ratio. An asynchronous
interface circuit with an 8-b first-in first-out (FIFO) buffer for
input/output (I/O) communication of the chip is also designed.
Thus, both I/O and compression operations in the chip can
be done simultaneously. Moreover, the concept of design for
testability is used and a scan path is implemented in the chip.
A prototype 0.8-�m chip has been designed and fabricated in
a reasonable die size. This chip can yield a processing rate of
3 Mb/s with a clock rate of 25 MHz.

Index Terms—Arithmetic coding, chip design, lossless data
compression.

I. INTRODUCTION

L OSSLESS data compression, which can recover com-
pressed data without any distortion, is a useful strategy

in many applications. One strategy is for compressing sources
in which no loss of information is allowed, e.g., textual
files, executable files, and medical images. Another strategy
is for lossy image compression, in which lossless coding
is a part of the whole coding algorithm, e.g., those algo-
rithms specified by JPEG [1] and MPEG [2]. Various lossless
compression techniques have been developed for sources
of different characteristics. There are two types of general
lossless coding schemes: dictionary and statistical coding
[3]. Dictionary coding achieves compression by identifying
repeated substrings and assigning a short code for them by
references to other copies defined in a dictionary. Statistical

Manuscript received April 21, 1997; revised November 10, 1997 and
February 27, 1998. This work was supported by the National Science Council,
R.O.C., under Grant NSC-86-2221-E-006-022. This paper was recommended
by Associate Editor T. Noll.

The authors are with the Department of Electrical Engineering, National
Cheng Kung University, Tainan, Taiwan 70101, R.O.C.

Publisher Item Identifier S 1057-7122(98)05299-4.

coding makes the code table according to the probabilities
that the symbols will occur. A shorter code is assigned to a
frequent symbol and a longer code for a rare one. Although
these two schemes are expert on different sources, it has been
shown in [4] that any practical dictionary-coding scheme can
be outperformed by a corresponding statistical-coding scheme.

The process of statistic coding can be split into two stages:
modeling, which estimates the relative probability for each
input symbol, andcoding, which translates input symbols into
a coded stream by the estimated probability. There are two
strategies for the modeling: static or adaptive. Static models
assume fixed probabilities for each input symbol throughout
the coding procedure. In contrast, adaptive models represent
the probabilities so far and change them with each new
symbol. It has been demonstrated under general conditions that
adaptive coding outperforms static [5]. Well-known statistical-
coding techniques include Huffman [19] and arithmetic coding
[6], [7]. Huffman requires that each symbol be represented
by an integer number of bits. On the other hand, arithmetic
coding represents the source data as a fraction that assumes a
value between zero and one. It can achieve better compression
ratios than Huffman coding as long as the statistics are accurate
[3]. However, arithmetic coding tends to be slow because in
its simplest form it requires at least one multiplication per
input symbol. Moreover, if the adaptive coding scheme is
applied, an extra division may be needed at every coding cycle.
Therefore, algorithm modification and hardware realization for
arithmetic coding to prompt the compression speed are critical
in real-time applications.

Many fast adaptive arithmetic-coding algorithms have been
proposed [8]–[10]. However, because the implementation of
multialphabetic arithmetic coding is very complicated, few
chips have been reported that use multialphabetic arithmetic-
coding algorithm. To make the implementation of arithmetic
coding easier and more practicable, the size of the alphabet
needs to be reduced to binary so that the coding process can
be correspondingly simplified. A faster and simpler implemen-
tation of arithmetic-coding algorithm is using the table lookup
approach [23]. However, its memory size and compression
ratio must make a tradeoff; and the memory size may be
very large in order to get a high compression ratio. On the
other hand, the -coder, an adaptive binary arithmetic-coding
chip for the bilevel image compression, has been presented
[11], [12]. Some architectural advances in the very large scale
integration (VLSI) implementation of arithmetic coders has
been made by [13] using the technique of loop unrolling and
speculative execution. In addition, the -coder, a linear de-

1057–7122/98$10.00 1998 IEEE

694 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

scendent of the -coder, has been adopted by both JPEG and
JBIG still-image-compression algorithms [21]. Fu and Parhi
[14] proposed an algorithm which uses redundant arithmetic
to obtain further speed-up for the -coder. However, all the

-coder-based arithmetic-coding hardwares described above
are designed to compress mainly bilevel image data and may
be poor for other types of data. It would be nice to have
a compression chip universal enough to quickly compress
any type of data that could still achieve a good compression
ratio.

In this paper, we present an adaptive division-free
arithmetic-coding hardwared algorithm and its VLSI design
for lossless compression of universal data. The basic binary
arithmetic-coding scheme is first modified to adaptively
estimate the occurring probabilities of input symbols, and
then the important implementation problems of fixed-precision
registers, source termination, and carry-over are solved, in
order to make it apposite for hardware implementation. The
modified hardwared algorithm iteratively codes input data by
the three phases of: 1) probability estimation; 2) arithmetic
operation; and 3) normalization. In the probability-estimation
phase, a ten-order context (Markov) modeler is designed to
gather the conditional probabilities of the input symbols,
which are also updated by the modeler with each input bit
in order to approach their accurate values and obtain a high
compression ratio for different types of files. A new formula
which efficiently reflects the change of symbols’ occurring
probability is proposed, and a complete binary tree is used to
set up the values in the probability table. In the arithmetic-
operation phase, a simplified parallel multiplier, which requires
approximately half of the area of a standard parallel multiplier,
is used to perform the multiplication operations of coding.
In the normalization phase, a new bit-stuffing technique
is applied to solve both the source-termination and carry-
over problems simultaneously and efficiently. The proposed
hardwared algorithm is then implemented into a VLSI chip.
In it, an asynchronous interface circuit with a 1-byte first-in
first-out (FIFO) buffer for input/output (I/O) communication
is designed. Thus, both I/O and compression operations in the
chip can be performed in parallel. Moreover, the concept of
design for testability is used and a full scan is implemented
in the chip. It is implemented by using the 0.8-m CMOS
technology, and it occupies a silicon area of 4.24.5 mm ,
yielding a compression rate of 3 Mb/s with a clock rate of
25 MHz. Since the chip can compress any type of data with
a good average compression ratio, it is suitable for use in
an environment which has much multimedia (e.g., text data,
executing files, and audio and video data) to be stored and
losslessly transmitted many times.

In Section II, we will introduce the basic adaptive division-
free binary arithmetic-coding scheme and the proposed hard-
wared algorithm. In Section III, we will describe the system
architecture of the chip to realize the proposed algorithm.
The detailed hardware design of the key building modules in
the chip is also addressed in Section III. The chip realization
and analysis of the proposed adaptive binary arithmetic-coding
chip are discussed in Section IV. Finally, concluding remarks
are made in Section V.

II. BINARY ARITHMETIC CODING

A. Basic Binary Arithmetic-Coding Scheme

Arithmetic coding is a statistical-coding technique that
attempts to represent source data with minimal entropy [6],
[7]. The encoding process begins with the open interval

and subdivides it into subintervals, where is the
number of unique symbols in the source data stream. Each
subinterval represents a unique source symbol, and the size
of the interval is proportional to that symbol’s probability of
occurrence. For a given source symbol, the encoder locates
the corresponding subinterval, and then divides this interval
into subintervals whose ratios are the same as the original
cumulative probabilities. The encoder finds the appropriate
subinterval for each successive symbol. Since this subinterval
is located within the previous interval, it represents not only
the present, but also the past symbols. This process continues
recursively until the entire source data stream has been en-
coded, at which time the encoder transmits the final interval.
The decoding process of arithmetic coding recovers the source
symbols from the received interval using a procedure similar
to that of the encoding process. Like the encoder, the decoder
begins with the open interval subdivided into the same

subintervals. The decoder locates the subinterval in which
the received interval resides, yielding the first symbol in the
stream. This subinterval is further divided in the same manner
to recover subsequent symbols. The procedure terminates
when the current and received intervals are equivalent.

Binary arithmetic coding deals with only two input symbols:
‘1’ and ‘0.’ Therefore, the coding process will be simplified
correspondingly and be easier to implement. Letand
represent the width of a subinterval, and the starting point of
the subinterval respectively, and let probability ‘ ’
denote the occurring probability of symbol ‘0’ given the
previous input string . If symbol ‘0’ is encoded, the new

becomes equal to ‘ ’ , and the remains
unchanged. If symbol ‘1’ is encoded, then the newbeing
equal to ‘ ’ ; the is added ‘ ’ .
If we approximate ‘ ’ with a value of , the
adaptive encoding algorithm may thus be written as

;
for (each input symbol)

‘ ’ ; (1)
if (input symbol ‘ ’) ; (2)
else (3)

Output as the encoding result.
Fig. 1 shows the interval subdivision example of binary

arithmetic encoding when the following data string is
“ .” The and in Fig. 1 denote the width and
starting point of the subinterval of iteration, respectively.
Note ‘ ’ ‘ ’ .

The binary decoding process follows a similar procedure
in reverse. The received is compared at each cycle with
the , and falls in one of the regions corresponding to the
symbol ‘0’ or ‘1’ according to its magnitude. The correspond-
ing symbol is thus decoded. is then adjusted by the same
method as employed in the encoding process. In the case in

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 695

Fig. 1. Interval subdivision example of the binary arithmetic encoding.

which symbol ‘0’ is decoded, remains unchanged. In the
case in which symbol ‘1’ is decoded, must be subtracted by

. The adaptive decoding algorithm is as follows:
is the input of encoding; ;

while (the input encoding data does not terminate)
‘ ’ ;

if
‘0’ is decoded;

; (4)

else
‘ ’ is decoded;

(5)

B. Implementation Issues

On a conceptual basis, hardware implementation of the
above algorithms would seem quite simple. However, some
practical considerations, which complicate the design of the
desired on-line and adaptive binary arithmetic-coding chip,
need to be addressed before the practical chip implementation
is carried out. They are outlined as follows.

1) Fixed-precision registers: How can the arbitrarily long
fixed point binary fractions and be calculated on a
chip employing fixed length registers?

2) Source termination: Because we want the coder to work
on-line, it cannot know the length of the encoded data
stream in advance. How does it know when to terminate?

3) Carry-over problem: Since the encoder works on-line,
once some symbols are encoded, the encoding of subse-
quent symbols may alter what has already been outputted
due to the carry occurring in (3). This condition occurs
when a carry generated in (3) propagates through all
bits of register to affect the encoded symbols that
have been shifted out by the normalization operation on

, which solves the fixed-precision registers issue and
is discussed later.

4) Adaptive statistical modeling: How is the probability of
each symbol estimated, and how is their cumulative
probability maintained?

The approaches to solve the first three issues will be discussed
in this subsection, while the design of the adaptive modeler
needed to deal with the fourth issue will be explained in the
following subsection.

1) Fixed-Precision Registers:In the designed chip, two
fixed-size registers, named registerand register , are used
to keep track of the subinterval width and the starting point
of the subinterval , respectively. Since finite-length registers
are used, the multiplication result in (1) has to be maintained
to a fixed number of bits by normalizing registersand
[6]. During the encoding process, registeris normalized by
shifting some bits to the left so that its most significant bit
(MSB) is one whenever the value of is less than half of the
initial subinterval width. Register is also shifted to the left
the same number of times, so that bits in theregister always
have the same algebraic weight as the aligned bits in the
register. The bits shifted out from the most significant end of
register are buffered and transmitted out as the encoded
output.

During the decoding process, registersand are required
to go through the same normalization process in which the
number of bits shifted left out from and are discarded;
at the same time, the same number of bits from the input
encoded string are shifted to the right end offor the next
cycle decoding.

2) Source Termination and Carry-Over:For the source-
termination problem, Wittenet al. [7] use an extra symbol
‘EOF’ to indicate the situation of source termination.
However, the method loses compression ratio and increases
the complexity of the coding process. To solve the carry-
over problem, a technique calledbit stuffing is proposed

696 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

in [6]. Here, we present a new efficient method to solve
the two issues simultaneously. The proposed method uses
a termination mark rather than the termination symbol to
indicate source termination, thus avoiding the complexity
of coding increasing. This is an improved technique of bit
stuffing. In the following, we show how this termination mark
works.

To solve the two issues together, a 16-b shift register called
is used as the output buffer in the encoder. During the

normalization process of encoding, we check the contents of
register . If all its bits are ‘1’ ’s, we add and shift two
stuffing bits with value ‘0’ into the least significant bit (LSB)
of to block carry-over propagating. We know the second
stuffing bit may be changed to ‘1’ if a carry is generated
in (3) during encoding. Since no carry can propagate to the
same bit twice, the first stuffing bit will always be ‘0’ and
this feature will be used to indicate the source-termination
condition. When the process of encoding ends, the encoder
sends an additional successive 17 ‘1’ ’s out as the termination
mark. In the decoding process, the registeris used as the
input buffer. If the decoder receives 16 bits all with value ‘1,’
i.e., , it will check the next two input bits (stuffing
bits). If these stuffing bits are “1x” (: do not care), the decoder
will end the decoding process. If the stuffing bits are “01,” the
decoder will add 1 to the decoded result to amend it. The
decoder just ignores the two stuffing bits when they are “00.”

However, sometimes the encoder may output 16 consecutive
‘1’ ’s though the contents of output buffer are never equal
to . This will cause the decoder to work incorrectly.
The reason why this situation occurs is explained as follows.
Assume output buffer to be equal to . During the
normalization, the MSB of will shift left out and become
an encoding output. If the bit shifted from into is ‘1,’
the contents of will become . Then, if the operation

produces a carry when encoding the next symbol, the
contents of must add one and become , which will
form 16 consecutive ‘1’ ’s with the MSB ‘1’ that has been
shifted out; however, the contents ofare not equal to
at that time. An additional up-count counter numis used to
overcome the problem. The counternumis first set to 0 and
then counts the number of consecutive ‘1’ ’s outputted from the
encoder. If the output of the encoder is ‘1,’ counter,num
accumulates one. Otherwise num is reset to zero. When

num , which denotes consecutive 16 ‘1’ ’s outputted
from the encoder, the encoder adds and shifts two stuffing bits
“00” into and resets num.

Note that the decoder reads the encoded string and judges
whether register is equal to only during the normaliza-
tion phase. In order to ensure that the termination mark works,
one extra less probability symbol (LPS) must be encoded
before the encoder sends consecutive 17 ‘1’ ’s to terminate
the encoding process. As a result, when the decoder decodes
the extra LPS, the MSB of after the arithmetic operation
of (4) or (5) will be zero and, therefore, the operations of
normalization will be executed so that the termination mark
can be detected to end the decoding process.

We now compare our termination mark with the termination
symbol used in [7]. Regarding the complexity of coding, the

method in [7] using the special termination symbol ‘EOF’ will
increase the coding complexity because it needs at least three
input symbols. This makes the probability model work more
difficult, and more steps will obviously be needed in the coding
process. As for the loss of compression ratio, we estimate it
by the two following methods.

When the termination symbol ‘EOF’ is used:

In the arithmetic-coding process, the subinterval of any
symbol must be greater than zero. If is an 8-b register,
the value of after normalizing will be

Moreover, the subinterval of ‘EOF,’ which is stored in an
8-b register, must be larger than or equal to . Thus,

‘EOF’

By (4) and (5), the probability of ‘EOF,’ ‘EOF’ ,
will be

‘EOF’

‘EOF’

‘EOF’

Therefore, the interval that we can use for all other symbols
will reduce 0.78% at least. That is, the overall compression
ratio will reduce 0.78% at least.

When our termination mark is used;

During the encoding process, two extra stuffing bits are
added and outputted whenever 16 consecutive ‘1’ ’s are
generated. Assuming that the probability of each encoded
bit ‘1’ equals 1/2 (based on the assumption that the encoded
result usually has the maximum entropy), we will add two
stuffing bits every 2 bits on average. This causes the
compression ratio to be decreased by a figure of

%. Finally, one extra LPS and 17 consecutive ‘1’ ’s as
the termination mark are added fixedly to end the encoding
process, only decreasing the compression ratio slightly.

C. Design of Adaptive Modeler

The main challenge in designing the adaptive coding chip
is how to estimate the probability of each input symbol and
how to maintain their cumulative probabilities. Many adaptive
models have been proposed [8]–[10], their main problems
being that they are not accurate enough or are too complex
with more computation resources. Here, we design a new
adaptive and division-free probability estimation modeler with
less memory that still achieves a high compression ratio.

Our basic idea is to find the probability values with the most
occurring frequencies for symbol ‘0’ in the sources in advance,
and to save them in a probability table calledProb0, which
is used to approximate the conditional probability‘ ’ .
We shall also construct two offset tables called and

, which store the distances between the new and original
probabilities in the probability tableProb0 for the current
input ‘0’ or ‘1,’ respectively. These tables will be used to
get the new probability. An -bit shift register named is
used to record the previous input symbols, called conditional

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 697

Fig. 2. The relation between tableAd, Prob0, G0, andG1.

states or contexts; this register helps the modeler to estimate
the conditional probability ‘ ’ or simplify

‘ ’ for the next symbol. Because the-bit shift
register is applied, we say we use an order-context (Markov)
model. Additionally, an address table, denoted asAd, with
2 pointers, which point to the entries ofProb0 to find the
conditional probabilities for 2 states, is also constructed.
Initially, all the entries in theAd table point to the entry in the
Prob0 table with a probability value equal to 0.5. The value
of the register is used as an index for the table. Based
on the above mechanism, the formulas required to generate
condition probability ‘ ’ of input symbol ‘0’ given
the previous input condition recorded in, and to update
the corresponding pointer in theAd table for the next cycle
adaptation are as follows:

‘ ’

(6)

, if symbol ‘0’ is coded
, if symbol ‘1’ is coded.

(7)

The relation among tablesAd, Prob0, G0, andG1, as well
as , is shown in Fig. 2. How to determine the bit number
of register and how to find the values filled in tablesProb0,

and are described in the following paragraphs.
1) Determining the Bit Number of Register: In general,

the input data stream is a random process with some statistical
relation. That is, there is a correlation between a particular
symbol and its neighborhood in the input data stream. For
example, the individual probability of character ‘’ appearing
in the text data is 2.4%, but the probability of character
‘ ’ appearing after character ‘’ is 99%. Using the Markov
model in the coding will isolate the probability distribution
of symbols and decrease the randomness. Therefore, using
the high-order Markov model to estimate the probability of
symbols occurring will increase the efficiency of arithmetic
coding. However, it is not practical to use the high-order
Markov model in the multialphabetic arithmetic coding due to
memory limits because there exist conditional states for
the order- context model if there are different symbols in
the alphabet. However, for binary arithmetic coding, the high-
order Markov model is made possible by the fact that only
two different symbols, ‘1’ and ‘0’ are involved. The problem

Fig. 3. The curve of average compression ratio versus ordern.

is how to determine the’s value so that its high compression
efficiency can be obtained without using a large memory.

In fact, the compression efficiency does not necessarily
increase when order increases. We find that the compression
efficiency increases very little or even decreases by increasing
order when is large. One of the reasons for this is that
the order becomes higher and that the condition states then
increase much more; however, the length of the input data
stream is finite and it may have been coded completely before
the probabilities under the condition states become stable.
Therefore, for short source input, the compression efficiency
decreases earlier. Fig. 3 shows the average compression ratio
of binary arithmetic coding versus the ordermade by us for
26 different types of files (including text, binary, and image
files). The compression ratio, denoted by-ratio, is defined as

-
the compressed data size

the original data size
(8)

The results show that the compression efficiency decreases
when order is larger than 18. In our design, order is
selected as ten to save the required memory so that the
whole circuit can be integrated into one chip and still have
a good compression ratio. On-chip memory limitation can be
overcome by adding external memories for higher order cases
to increase the compression ratio.

2) Building the Probability TableProb0: The probability
tableProb0 contains the first 128 probabilities with the highest
occurring frequencies for symbol ‘0.’ To find these probability
values, we use a complete binary tree and some counters to
simulate the process of calculating conditional probabilities in
coding (see Fig. 4). Every node in the tree represents a state of
the probability calculating process and contains two data: one
is the value of ‘ ’ at the state, the other is its weight.
The weight of a node shown in parenthesis means the relative
occurring frequency of the state compared to all other states.
The left child of a node is the new state when input symbol
‘1’ is inputted, and the right child is ‘0.’ Initially, the value of
the root node is “1/2” and its weight is set as 1000. The value
of the right child of the root is “2/3,” which means that the
new ‘ ’ is “2/3” after an input symbol ‘0’ is inputted,
that the weight of the node becomes 500 because its parent
node’s weight is 1000, and that the probability of getting input
symbol ‘0’ is assumed to be 1/2. By this process, we build
a complete binary tree of 255 levels. The partial tree and

698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

Fig. 4. Part of the probability estimation tree.

TABLE I
THE RESULT OF THE PARTIAL TREE OF FIG. 4

its corresponding results are shown in Fig. 4 and in Table I,
respectively. After the complete binary tree of 255 levels is
constructed, the first 128 probability values according to their
corresponding weights are selected and put into theProb0
table, as shown in Fig. 2.

3) Building the Offset Tables and : From observ-
ing the process of calculating conditional probabilities with
counters, we know there are different variations of the
conditional probability for symbol ‘0,’ ‘ ’ , during
the encoding process. The conditional probability of symbol
‘0’ will change faster (slower) when few (many) input data
have been compressed. We use the following new formulas
with a parameterstep to approximate the complex variation
of the conditional probability ‘ ’ :

‘ ’
step

step
% if input symbol is ‘0’

step

step
% otherwise

(9)

where is the number of symbol ‘0’ that has been encoded,
is the aggregate number of all symbols that have been

encoded, andstep is a tuning parameter used to reflect the
degree of the variation of the probability ‘ ’ ,
step . The larger the value ofstep is, the more quickly
the variation of ‘ ’ changes.

Using the simulation result of (9), we calculate the distance
(offset) value in tableProb0 between the current ‘ ’
and the next ‘ ’ for each state , and store all offsets
into tables and . However, how to choose thestep
value to tune ‘ ’ to approach the variation is still a
difficult problem. We have chosen threestepvalues: 16, 32,
and 64, and use (9) and the proposed approach to simulate
the variation of ‘ ’ ’s and to do compression. The
corresponding compression results for different types of files
are given in Table II. In this table, all compression results
are obtained by adopting the order-16 context model. Each
result in the “entropy” row is obtained by prescanning the

TABLE II
THE COMPRESSIONRATIO COMPARISON OFTHREE STEP VALUES FOR

DIFFERENT TYPES OFFILES USING THE ORDER-16 CONTEXT MODEL

whole input file to calculate the actual occurring probabilities
of symbols ‘0’ and ‘1’ being used in the following coding
process. The compression in the “division” row is achieved
by using two counters and the division operation to directly
calculate ‘ ’ ’s. We find thatstep set to 64 is good
for text files since the data in the text files usually has more
figure of local correlation, and thatstep is good for
image files since the data in the image files usually has a
uniform distribution. On average, the compression ratios of
step are good for any type of files (see Table II). Because
our coding chip is targeted to general use, such as lossless
multimedia data communication applications,step is
chosen and practically implemented.

D. The Proposed Hardwared Algorithm and Comparison

Based on the above discussion, the pseudo-code description
of the proposed hardwared algorithm for adaptive binary
arithmetic coding is summarized in Fig. 5. Both the processes
of encoding and decoding are classified into three phases:
probability estimation, arithmetic operation, and normaliza-
tion. In the probability-estimation phase, the adaptive modeler
generates probability ‘ ’ by using (6). In the arithmetic
operation phase, the new values ofand are calculated by
using (2) and (3) for encoding, or (4) and (5) for decoding.
Moreover, the adaptive modeler is also updated by using (7) in
the arithmetic operation phase. The normalization phase of en-
coding (decoding) normalizes registerand , outputs (reads)
the encoded string, and deals with the source-termination and
carry-over problems by the approach described in Section II-
B-2.

For comparison purpose, we considered some different
coding methods for coding different types of data. Table III
shows the comparison results of compression ratio for different

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 699

(a)

(b)

Fig. 5. (a) The pseudo-code of the proposed adaptive binary arithmetic-encoding algorithm. (b) The pseudo-code of the proposed adaptive binary
arithmetic-decoding algorithm.

coding methods by adopting the order-16 context model.
In the table, ST32 is the proposed hardwared algorithm
with fixed tuning step 32. MF1 and MF2 are the binary
arithmetic multiplication-free coding based on the algorithms
proposed in [8] and [9], respectively. MDF is the binary
arithmetic multiplication-free and division-free coding based
on the algorithm proposed in [10]. The three software pro-
grams, MF1, MF2, and MDF are implemented by us using

their original algorithms, except that an order-16 context
model is added for comparison. In addition, Huffman is the
adaptive Huffman method [19]. LZW is the compress utility
on UNIX [25]. Comparison results show that the proposed
hardwared algorithm can compress any type of data with a
good compression ratio. The next problem is how to design
and implement the hardwared algorithm with less hardware
and a sufficient speed for real-time applications.

700 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

Fig. 6. The functional block diagram of the adaptive binary arithmetic-coding chip.

TABLE III
THE COMPARISON RESULTS OF COMPRESSION

RATIO FOR DIFFERENT CODING METHODS

III. SYSTEM ARCHITECTURE AND MODULE DESIGN

In this section, the system architecture of the proposed
hardwared algorithm is first described and then the detailed
hardware designs of its main building modules are introduced.

A. System Architecture

Fig. 6 shows the functional block diagram of the adaptive
binary arithmetic-coding chip. The chip consists of three main
modules: adaptive coder, asynchronous I/O path, and control
path. The chip can perform both encoding and decoding

functions. One external signal En/De is used to select the
desired chip function (encoding or decoding). The functional
description of each module is addressed as follows.

The adaptive coder, which contains an adaptive proba-
bility estimation modeler (APEM), an arithmetic operation
unit (AOU), and a normalization unit (NU), performs the
operations of encoding and decoding. The 10-b shift register
records the ten previous input symbols. The APEM generates
condition probability ‘ ’ of symbol ‘0’ given the
previous input condition recorded in register. Once the
probability ‘ ’ is obtained from the adaptive modeler,
the AOU uses it to calculate as well as the new values of
and , which are successively sent to the NU to be normalized
if necessary. Moreover, the NU will send the encoding result
to the I/O path or receive the input symbols to be decoded
from the I/O path.

All the above operations are governed by the control path.
The control path receives the control statuses from the adaptive
coder and the I/O path and generates the control signals
for them. Since the adaptive coder can execute encoding
or decoding operations, the control path consists of two
distinct combinational logic circuits, as shown in Fig. 6. The
combinational logic circuit EnCL and DeCL generate the
control and next-state signals for encoding and decoding
operations, respectively. Another external signalInit initializes
all data and state registers in the chip.

The asynchronous I/O path has one 8-b input FIFO buffer
and one 8-b FIFO output buffer, and generates appropriate
handshaking signals for asynchronous I/O. The signals
generated are used to control the data transfer between the
I/O path and the external environment (device) or the internal
adaptive coder. The I/O path can independently work to the
other part of the chip, i.e., asynchronously. The adaptive coder
may not be idle when data input or output is occurring in the
I/O path. The I/O path will suspend the coder when it wants

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 701

(a)

(b)

Fig. 7. The architecture of the asynchronous I/O path. (a) The architecture of the input path. (b) The architecture of the output path.

(a)

(b)

Fig. 8. The handshaking timing of the I/O path. (a) Input path timing. (b)
Output path timing.

to read data from the empty input buffer or to write data out
into the jammed output buffer. The architecture of the input
and output paths, which consist of an 8-b FIFO and a transfer
circuit (Tran), is shown in Fig. 7(a) and (b), respectively. The
input and output signals of the 8-b FIFO include empty (buffer
empty), din (data input), dout (data output), request for data
(RD), input data valid (IV), output data valid (OV), and data
accepted (DA). Fig. 8(a) shows the timing diagram of input
path’s data transfer. The input path initiates the transfer by
enabling the RD signal when the buffer is not full. The external
input device places data on the din line after it receives the
RD signal from the input path and enables the IV signal; the
input path then disables the RD signal, which invalidates the
data on the din line; the external device then disables the IV
signal and the Input path can then initiate another input data
transfer. Fig. 8(b) shows the timing diagram of the output
path’s data transfer. The output path initiates the transfer by
placing the data on the dout line and enabling the OV signal.
The DA signal is activated by the external output device after
it accepts the output data from the dout line; the output path
then disables the OV signal, and the external device then

Fig. 9. The timing diagram of the Tran circuit.

disables the DA signal. The output path does not initiate the
next output data transfer until the external device shows its
readiness for new data by deactivating the DA signal.

The Tran circuit in the I/O path converts the “Read” or
“Write” control signal, denoted as In, from the control path into
the internal handshaking signal, Out. Then signal Out activates
the DA signal of the FIFO buffer. The Read (Write) control
signal In will be set to one during the reading or writing cycles.
The timing diagram of the Tran circuit is shown in Fig. 9.

B. Module Design

After designing the system architecture of the chip, the next
problem is how to implement it with smaller hardware area
and higher speed for real applications. The realization of the
circuit employs the high-level synthesis concept [15] and the
bottom-up approach. The detailed design of the key building
modules in this chip, including the APEM, the AOU, and the
NU is introduced as follows.

1) APEM: Fig. 10 shows two architectures of the proposed
APEM. In them, the 1024 8 b SRAM forms the table,
and the 128 18 b ROM constitutes theProb0, , and

tables. The contents of the 10-b shift registerare the
memory address of the static random-access memory (SRAM).
The contents of SRAM are used as the address of ROM. The
input coding bit, represented by ShiftIn in Fig. 10, is used
to update the data stored in the table. In architecture 1
of Fig. 10(a), the addition and subtraction operations in (7)
are concurrently executed by one adder and one subtractor,

702 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

(a)

(b)

Fig. 10. The architecture of the proposed APEM. (a) Architecture 1. (b)
Architecture 2.

Fig. 11. The architecture of the AOU.

respectively. The produced results are selected by one two-
input 8-b multiplexer to obtain the new . However, the
two operations in (7) are mutually exclusive. In other words,
they will never be simultaneously executed. Therefore, they
can share one ALU with addition and subtraction functions, as
shown in architecture 2 of Fig. 10(b). The execution function
of the ALU in architecture 2 is determined by the ShiftIn
signal, which is also used to select the correct offset values
inputted to ALU from table or through a two-input
5-b multiplexer.

The advantages of architecture 2 are higher hardware uti-
lization, simpler interconnection, and less hardware area. Its
drawback is that the ALU must execute its operation after
Shift In is known so that more clock cycles are required for
decoding. This drawback is avoided by architecture 1, in which
the adder and subtractor can execute their operations before
Shift In is obtained. Moreover, the adder and subtractor in
architecture 1 can be shared with the operations of (3) or (5)
in the AOU (see Fig. 11) to further enhance the hardware
utilization and save the hardware area since their active times
are without conflict. Therefore, architecture 1 is better than
architecture 2 in global view. As a result, architecture 1 is
applied and implemented in our chip.

2) AOU: The AOU includes a multiplier, an ALU, a sub-
tractor, and a comparator, as shown in Fig. 11. Once the

probability ‘ ’ is obtained from the adaptive modeler,
the multiplier calculates ‘ ’ . Subsequently, the
subtractor executes the operation of in (3) or (5). The
ALU with only addition and subtraction functions executes the
operation of in (3) or in (5). As mentioned
before, the ALU and subtractor can also be shared to execute
the addition and subtraction operations in (7) since their active
times are without conflict. This sharing saves the area of
one adder and one subtractor, as well as the expense of the
additional multiplexer space.

The multiplier is a key component in the adaptive coder
since it is located on the system’s critical path and its area
is the biggest in the unit. To get the faster performance,
the parallel multiplier [16], [17] is always adopted at the
expense of high area complexity. However, we find that the
multiplication in (1) has a special feature in which the input
operands and ‘ ’ and the product are 8 bits.
Moreover, the eight LSB’s of the product are not used. As a
result, a simplified parallel multiplier can be designed to reduce
the area complexity without sacrificing any performance or
compression efficiency.

Before discussing how to design the simplified multiplier,
we first examine the operation of a standard multiplier. Assume
that two 8-b numbers and are to be multiplied, the
standard multiplier performs the following operation to obtain
the product :

(10)

where , , and denote the th bit of , , and ,
respectively. For the standard 88 parallel multiplier in
Fig. 12, the partial sums propagate diagonally in the southeast
direction along lines of equal binary weight directions, and the
carries propagate downwards along increasing binary weight
directions. The delay in this operation is due to the carry
propagation through the adder array and the carry–ripple adder,
shown at the bottom of Fig. 12. The carry–ripple adder is
usually replaced by a carry look-ahead adder to reduce the
delay.

The product can be represented by the sum of two segments:
the most and least significant segments and , i.e.,

(11)

Fig. 12 also shows the various sections of the standard mul-
tiplier generating and . The shaded region contains
cells that produce . If the eight LSB’s of the product are
truncated, segment is discarded, and approximately half of
the adder cells in Fig. 12(a) are not used, but an error in the
required product would be introduced. We find that the error
involved is tolerable and does not degrade the compression

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 703

(a)

(b)

(c)

Fig. 12. (a) The block diagram of an 8� 8 parallel multiplier where HA and
FA are the half-adder and full-adder cells, respectively. (b) Details of cell�.
(c) Details of cell�.

efficiency. The error and compression efficiency analysis will
be discussed below. Therefore, we now design a simplified
parallel multiplier which generates a product whose value is
approximately equal to by modifying the left–bottom part
of Fig. 12(a) and without using the cells in the shaded part.
Fig. 13 shows the details of the simplified multiplier.

A comparison of Figs. 12(a) and 13 reveals that the simpli-
fied multiplier yields a product which is not exactly equal to

. From Fig. 12, it can be seen that all the bit products are
generated by performing anAND operation on the bits of the
two operands. Let be the probability that any multiplicand
or multiplier bit is one. The probability that the bit

Fig. 13. The simplified 8� 8 parallel multiplier.

product at column and row is one is equal to . Let
denote the probability that the sum bit of the adder at theth
column and th row is one and let denote the probability
that the carry bit is one. Moreover, let ,

, and . For a standard
parallel multiplier we have the following.

Case 1: When and

(12)

(13)

Case 2: When and

(14)

(15)

It can be seen from Fig. 13 that the expected error in the
product of the simplified multiplier is equal to the value of
the output carry bits from the cells at position where

, , and . The weight of these
bits is equal to 2 . We call the cells of Fig. 13 at position

such that the diagonal cells. The probability
that any output carry bit at the diagonal is one is equal to its
expected value. Therefore, the excepted value of the error in
the product of the simplified multiplier is given by

(16)

for belonging to the diagonal cells.

704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

TABLE IV
THE COMPRESSIONRATIOS OF THE CHIP USING

THE STANDARD AND SIMPLIFIED MULTIPLIERS

Fig. 14. The architecture of the NU.

Since , it is thus evident that the expected
error lies in the range . The excepted error is
tolerable in the coding process since one operand‘ ’ of
it is also an estimated value and the error will not significantly
affect the compression efficiency of the chip. The compression
ratios for the chip using the standard parallel multiplier and the
simplified parallel multiplier obtained from the experiments
are summarized in Table IV. From Table IV, it can be seen that
a slight difference is incurred. On average, the compression
ratios are about the same.

3) NU: In the NU, two 8-b shift registers and are used
to keep track of the width of the subinterval and the starting
point of the subinterval, and one up-count counternum
is used to count the number of consecutive ‘1’ ’s coded. In
addition, a 16-b shift register is required to solve the source-
termination and carry-over problems. The architecture of the
NU is shown in Fig. 14. The dashed lines with arrows in it
are the control statuses which will be sent to control path.

Observing the algorithms of Fig. 5, the bound of the con-
tents of num is 15 and, thus, a 4-b up-count counter is
sufficient to implement the operation of num. An extra
four-input AND gate is integrated into it to examine whether
it is equal to 15 and to generate the status signal . In
addition, the contents of must also be examined to determine
whether they are equal to when and shift one bit
left during the normalization phase of encoding. Therefore, an

Fig. 15. The microphotograph of our binary arithmetic-coding chip.

extra simple circuit, which consists ofAND gates, is integrated
into the register to examine whether all bits of registerare
‘1’ ’s and to generate the status signal . Moreover, in the
arithmetic operation phase of encoding, registeris increased
one when the operation produces a carry. Although
the operation can be executed in one 16-b adder, the hardware
area overhead is significant. It is cheaper to use one up-count
counter to execute the operation. Consequently, register
must be designed with the ability to perform up-count. On the
other hand, register may add one during the normalization
phase of decoding. Similar to register, shift register must
also be designed with the ability to perform up-count.

IV. CHIP REALIZATION AND ANALYSIS

A prototype of the chip has been implemented and fabri-
cated by using the standard cells of 0.8-m single-poly double-
metal (SPDM) technology [18]. The function of the proposed
adaptive arithmetic-coding architecture was first verified by
using the Verliog hardware-description language (HDL). We
then employed the computer-aided design (CAD) tools OPUS
[22] for the creation and verification of our chip layout. The
brief design flow is: first, use the preview tool in OPUS
to floor-plan blocks in the design; then, preview’s block
ensemble and cell ensemble are used to perform placement
and routing; finally, use Dracula [22] to verify the layout.
The microphotograph of the chip layout is shown in Fig. 15,
which contains two parts: the layout of standard cells and
four 0.25-kbyte SRAM’s. Table V shows the characteristics
of the adaptive binary arithmetic coding chip. The chip with
40 I/O pins occupies a silicon area of 4.24.5 mm . The
die is mounted in a 40 LD S/B package. The I/O pins can be
separated into five parts:

1) power supply pins;
2) chip control pins;
3) pins for data input;
4) pins for data output;
5) pins for testing.

KUANG et al.: DESIGN OF ADAPTIVE ON-LINE BINARY ARITHMETIC-CODING CHIP 705

TABLE V
THE CHARACTERISTICS OF THEADAPTIVE BINARY ARITHMETIC-CODING CHIP

Since the coding nature and strategy, and even the integrated
circuit (IC) fabrication technology are quite different for
the respective chips, it is difficult to directly compare an
arithmetic-coding chip with a Huffman one. Compared with
the Huffman coding chip of [24], the proposed chip uses about
three times the gate count and is seven times slower; note
that [24] is bit-parallel and contains only the encoder, but
the proposed chip is bit-serial and contains the encoder and
decoder. However, the proposed chip achieves two times the
compression ratio of [24] (see Tables III and VI). The benefit
of a higher compression ratio may be dominated if there are
larger quantity of data to be transmitted or stored many times,
which is the common situation for today’s multimedia Internet
environment. The details of scan path and compression speed
analysis of the proposed chip will be explained below.

In order to increase the testability of the chip, all registers
in the adaptive coder are connected in serial to form a scan
path. Moreover, besides the encoding and decoding modes,
the test mode is build into the chip by increasing two extra
external signals (pins) and a testing control block is
constructed. If “ ,” the chip works normally and
pin En/De is used to determine whether the chip is operating
in the encoding or decoding mode. Otherwise, the chip works
in the test mode. When “ ,” the test data is shifted
into the registers on the scan path and the original contents of
the registers are shifted out in serial. When “ ,”
the test data is sent to the functional units of the adaptive
coder to calculate the results. When “ ,” load the
calculated results of functional units into the registers on the
scan path in parallel. To do pseudoexhaustive testing, 2test
patterns are used and these test patterns take 0.22 s to finish the
testing under a clock rate of 25 MHz. We also can use the same
scan path to test the read-only memory (ROM) and SRAM’s in
the adaptive coder. The scan path in the chip provides 100%
fault coverage for the adaptive coder which occupies about
90% of the total device count in the chip. Since the control
and asynchronous I/O paths in the chip are not connected by
the scan path, its fault coverage approximates to 90%.

The compression speed of the chip under 25 MHz clock
rate is approximately 3 Mb/s (see Table VI) and is discussed
as follows. During each iteration of the coding process, it takes
eight clock cycles to complete the operation of the probability
estimation and arithmetic operation phases. The normalization
phase is a loop with variable iteration times. The execution
delay of each iteration in it is very close to one clock cycle
on average since the probability of register being equal

TABLE VI
THE COMPRESSIONRATIO AND COMPRESSIONSPEED

OF OUR CHIP FOR DIFFERENT TYPES OF FILES

Fig. 16. The percentage distribution ofnumbduring the normalization phase.

to is very small. In each coding cycle, the iteration
time of the normalization loop, denoted asnumb, is equal to
the number of left shifts occurring in register such that its
MSB is one. Although we have known thatnumb is bound
by seven, it is difficult to predict the average iteration time of
the normalization loop. To solve the problem, some sample
files are provided for software simulation of the proposed
algorithm to count thenumb in the normalization phase. The
percentage distribution of thenumb is listed in Fig. 16. The
results show that the most normalization loop executions are
executed zero or one iteration time and that about 0.5 clock
cycle is, therefore, needed to complete the normalization phase
on average. As a result, the analysis speed is about
Mb/s to which the chip speed conforms.

Besides the compression speed, the compression ratio is
also an important evaluation item. Some different types of
files were used to test the compression ratio. The results
compared with two different schemes, including Huffman and
the multialphabetic arithmetic-coding (MAAC) algorithm, are
shown in Table VI. Huffman is the adaptive Huffman coding
scheme [19]. MAAC was proposed by Jiang in [20]. Twelve
sample files are provided for the experiments; their sizes are
also listed in the second column under “file size.” Compared
with other schemes, the compression ratios of this chip are
also good. Moreover, the actual compression time (-time)

706 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 7, JULY 1998

and the compression speed (-speed) of our chip for these
files also are shown in Table VI. The average-speed of our
chip is very close to 3 Mb/s.

V. CONCLUSION

In this paper, we have presented a VLSI design of the
adaptive binary arithmetic coding for lossless data compres-
sion and decompression. The important implementation issues,
including fixed-precision registers, source-termination, and the
carry-over problem were all efficiently solved in the design.
The key modules of this design include an APEM, an AOU,
and a NU. A table lookup approach with 1-kbyte SRAM
and 0.28-kbyte ROM were used in the APEM to achieve a
good compression ratio. A simplified parallel multiplier, which
requires approximately half of the area of a standard parallel
multiplier, has been designed in the AOU to decrease the
hardware area. We also designed an asynchronous I/O path in
the chip, which enables the chip to release wait states when it
is transmitting data. A prototype of the chip has been designed
and fabricated. The performance of the chip is 3 Mb/s on aver-
age at 25 MHz. The performance seems to be improved by the
pipelining technique, although there are some hard problems
(e.g., the variable execution cycle numbers needed in each
coding iteration) that need to be solved. That is our next goal.

ACKNOWLEDGMENT

The authors wish to thank Chip Implementation Center
(CIC), R.O.C., for fabricating the arithmetic-coding chip and
the Computer and Communication Laboratory, Industry Tech-
nology Research Institute, R.O.C, for providing the 0.8-m
SPDM cell library. The authors would also like to thank
the anonymous reviewers, whose comments were useful in
improving this paper’s manuscript.

REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression standard,”Commun.
ACM, vol. 34, no. 4, pp. 30–44, Apr. 1991.

[2] MPEG-2 Video, Draft Int. Standard ISO/IEC DIS 13818-2.
[3] T. C. Bell, J. G. Cleary, and I. H. Witten,Text Compression. Engle-

wood Cliffs, NJ: Prentice-Hall, 1990.
[4] T. C. Bell, I. H. Written, and J. G. Cleary, “Modeling for text compres-

sion,” ACM Computing Survey, vol. 21, no. 4, pp. 557–591, 1989.
[5] J. G. Cleary and I. H. Witten, “A comparison of enumerative and

adaptive codes,”IEEE Trans. Inform. Theory, vol. IT-30, pp. 306–315,
Mar. 1984.

[6] G. G. Langdon and J. Rissanen, “Compression of black–white image
with arithmetic coding,” IEEE Trans. Commun., vol. COM-29, pp.
858–867, June 1981.

[7] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. ACM, vol. 30, no. 6, pp. 520–540, June 1987.

[8] D. Chevion, E. D. Karnin, and E. Walach, “High efficiency, multipli-
cation free approximation of arithmetic coding,” inProc. IEEE Data
Compression Conf., Snowbird, UT, Apr. 1991, pp. 43–52.

[9] G. Feygin, P. G. Gulak, and P. Chow, “Minimizing error and VLSI com-
plexity in the multiplication free approximation of arithmetic coding,”
in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 1993, pp.
118–127.

[10] L. Huynh, “Multiplication and division free adaptive arithmetic coding
techniques for bi-level images,” inProc. IEEE Data Compression Conf.,
Snowbird, UT, Mar. 1994, pp. 264–273.

[11] R. Arps, T. Truong, D. Lu, R. Pasco, and T. Friedman, “A multi-purpose
VLSI chip for adaptive data compression of bilevel images,”IBM J. Res.
Develop., vol. 32, no. 6, pp. 775–794, Nov. 1988.

[12] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B. Arps,
“An overview of the basic principles of theQ-coder adaptive binary

arithmetic coder,”IBM J. Res. Develop., vol. 32, no. 6, pp. 717–725,
Nov. 1988.

[13] G. Feygin, P. G. Gulak, and P. Chow, “Architectural advances in the
VLSI implementation of arithmetic coding for binary image compres-
sion,” in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar.
1994, pp. 254–263.

[14] B. Fu and K. K. Parhi, “Two VLSI design advances in arithmetic
coding,” in Proc. ISCAS, Seattle, WA, Apr. 1995, pp. 1440–1443.

[15] J. M. Jou and S. R. Kuang, “Library-adaptively integrated high level
synthesis systems,” inProc. NSC—Part A: Phys. Sci. Eng., vol. 19, no.
3, R.O.C., May 1995, pp. 220–234.

[16] M. Hatamian and G. L. Cash, “A 70-MHz 8� 8-bit parallel pipelined
multiplier in 2.5-�m CMOS,” IEEE J. Solid-State Circuits, vol. SC-21,
pp. 505–513, Aug. 1986.

[17] S. Nakamura and K. Y. Chu, “A single chip parallel multiplier by MOS
technology,”IEEE Trans. Comput., vol. 37, pp. 274–282, Mar. 1988.

[18] 0.8 �m SPDM Technology Manual, Comput. Commun. Lab., Industry
Technol. Res. Inst., Taiwan, R.O.C., 1993.

[19] D. E. Knuth, “Dynamic Huffman coding,”J. Algorithms, vol. 6, pp.
163–180, 1985.

[20] J. Jiang, “Novel design of arithmetic coding for data compression,”Proc.
Inst. Elect. Eng., vol. 142, no. 6, pp. 419–424, Nov. 1995.

[21] W. Pennebaker and J. Mitchell,JPEG Still Image Data Compression
Standard. New York: Van Nostrand Reinhold, 1993.

[22] Design Framework II User Guide. Cadence Design Syst., 1992.
[23] P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression,”

Proc. IEEE, vol. 82, pp. 857–865, June 1994.
[24] L. Y. Liu, J. F. Wang, and J. Y. Lee, “CAM-based VLSI architectures

for dynamic Huffman coding,”IEEE Trans. Consumer Electron., vol.
40, pp. 282–289, Aug. 1994.

[25] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,”IEEE Trans. Inform. Theory, vol. 24, pp. 530–536,
Sept. 1978.

Shiann-Rong Kuang received the B.S. degree in
electrical engineering from National Center Univer-
sity, Taiwan, R.O.C., in 1990, the M.S. degree in
electrical engineering from National Cheng Kuang
University, Tainan, Taiwan, R.O.C., in 1992, and
is currently working toward the Ph.D. degree in
electrical engineering.

His research interests include high-level synthesis
and VLSI chip design.

Jer-Min Jou received the Ph.D. degree in electrical
engineering and computer science from National
Cheng Kung University, Tainan, Taiwan, R.O.C., in
1987.

Since 1989, he has been an Associate Professor in
the Department of Electrical Engineering and Com-
puter Science, National Cheng Kung University.
His current research interests include application-
specific integrated circuit (ASIC) design/synthesis,
hardware-software codesign, VLSI CAD, and asyn-
chronous circuit design.

Dr. Jou was the recipient of a Distinguished Paper Citation at the 1987
IEEE ICCAD Conference, Santa Clara, CA.

Yuh-Lin Chen received the B.S. degree in elec-
tronic engineering from National Taiwan Institute
of Technology, Taiwan, R.O.C., in 1993, and the
M.S. degree in electrical engineering from National
Cheng Kuang University, Tainan, Taiwan, R.O.C.,
in 1995.

He is currently an Engineer at Silicon Touch
Technology Inc., Taiwan, R.O.C., where he works
on development and testing of fan IC’s, phase IC’s,
and hardware monitor IC’s.

